• Title/Summary/Keyword: quantum computing software

Search Result 5, Processing Time 0.017 seconds

State-of-the-art in Quantum Computing Software (양자컴퓨팅 소프트웨어 최신 기술 동향)

  • Cho, E.Y.;Kim, Y.C.;Jung, H.B.;Cha, G.I.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.67-77
    • /
    • 2021
  • Since Richard Feynman presented the concept of quantum computers, quantum computing have been identified today overcoming the limits of supercomputing in various applications. Quantum hardware has steadily developed into 50 to hundreds of qubits of various quantum hardware technologies based on superconductors, semiconductors, and trapped ions over 40 years. However, it is possible to use a NISQ (Noisy Intermediate Scale Quantum) level quantum device that currently has hardware constraints. In addition, the software environment in which quantum algorithms for problem solving in various applications can be executed is pursuing research with quantum computing software such as programming language, compiler, control, testing and verification. The development of quantum software is essential amid intensifying technological competition for the commercialization of quantum computers. Therefore, this paper introduces the trends of the latest technology, focusing on quantum computing software platforms, and examines important software component technologies.

Research on the current state of practical applications and limitations of quantum computing technology

  • Jaehyung, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2023
  • In this paper, we identify the factors that hinder the application of quantum computing technology to solve meaningful real-world problems, and suggest related research trends and directions. To this end, we summarize the basic knowledge of quantum mechanics from the perspective of computer science, which is necessary to understand the difficulties in applying quantum computing technology, and analyze the currently commercialized quantum computers and quantum programming layers from the literature. Through an analysis of the current status and utilization of cloud-based commercial quantum computing services, we identify four factors that currently hinder the practical application of quantum computing: high barriers to entry for quantum computer programming, constraints on noisy intermediate-scale quantum computers, a still-growing open source ecosystem, and difficulties in simulating realistic problem sizes, and suggest trends and directions for related research. In doing so, it is expected to contribute to laying the groundwork for practical applications of quantum computing technology.

A multilayered Pauli tracking architecture for lattice surgery-based logical qubits

  • Jin-Ho, On;Chei-Yol Kim;Soo-Cheol Oh;Sang-Min Lee;Gyu-Il Cha
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.462-478
    • /
    • 2023
  • In quantum computing, the use of Pauli frames through software traces of classical computers improves computation efficiency. In previous studies, error correction and Pauli operation tracking have been performed simultaneously using integrated Pauli frames in the physical layer. In such a complex processing structure, the number of simultaneous operations processed in the physical layer exponentially increases as the distance of the surface code encoding logical qubit increases. This study proposes a Pauli frame management architecture partitioned into two layers for a lattice surgery-based surface code and describes its structure and operation rules. To evaluate the effectiveness of our method, we generated a random circuit according to the gate ratios constituting the commonly known quantum circuits and compared the generated circuit with the existing Pauli frame and our method. Simulations show a decrease of about 5% over traditional methods. In the case of experiments that only increase the code distance of the logical qubit, it can be seen that the effect of reducing the physical operation through the logical Pauli frame becomes more important.

A Study of Distribute Computing Performance Using a Convergence of Xeon-Phi Processor and Quantum ESPRESSO (퀀텀 에스프레소와 제온 파이 프로세서의 융합을 이용한 분산컴퓨팅 성능에 대한 연구)

  • Park, Young-Soo;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.15-21
    • /
    • 2016
  • Recently the degree of integration of processor and developed rapidly. However, clock speed is not increased, a situation that increases the number of cores in the processor. In this paper, we analyze the performance of a typical Intel Xeon Phi of many core process used for the current operation accelerate. Utilizing the Quantum ESPRESSO, which was calculated using the FFTW library. By varying the number of ranks in MPI when running the benchmarks the performance Xeon Phi. The result shows a good performance in the handling of four job on one physical core. However, four or more to expand the number of MPI Rank is degraded. Through this convergence it was found to improve the performance of Quantum ESPRESSO. It is possible to check the hardware characteristics of the Xeon Phi.

A New Charge Analysis Derived From the Results of Semi-Emprical Mo-Lcao Calculation

  • Yilmaz, Hayriye;Ceyhan, Emre Cahit;Guzel, Yahya
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.195-200
    • /
    • 2012
  • In this study we present a new approach for computing the partial atomic charge derived from the wavefunctions of molecules. This charge, which we call the "y_charge", was calculated by taking into account the energy level and orbital populations in each molecular orbital (MO). The charge calculations were performed in the software, which was developed by us, developed using the C# programming language. Partial atomic charges cannot be calculated directly from quantum mechanics. According to a partitioning function, the electron density of constituent molecular atoms depends on the electrostatic attraction field of the nucleus. Taking into account the Boltzmann population of each MO as a function of its energy and temperature we obtain a formula of partial charges.