• Title/Summary/Keyword: quantum

Search Result 3,950, Processing Time 0.03 seconds

Evaluation of the Growth and Yield of Sweetpotato (Ipomoea batatas L.) at Different Growth Stages under Low Light Intensity (생육시기별 차광 처리에 의한 고구마 생육 및 수량성 평가)

  • Park, Won;Chung, Mi Nam;Nam, Sang-Sik;Kim, Tae Hwa;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Shin, Woon-Cheol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.146-154
    • /
    • 2021
  • This study was conducted to determine the degree of reduction in the yield of sweetpotato subjected to different shading treatments according to the growing season of the typical viscous sweetpotato 'Hogammi' and the powdery sweetpotato 'Jinyulmi'. Shading was provided using commercially available shading nets (55% and 75% shading level), and the treatments were applied at the following stages of storage root growth: SFS: the storage root formation stage (planting-50th day), SSS: the storage root swelling stage (50-90th day), and SAS: the storage root actively swelling Stage (90-120th day). The growth characteristics according to shading treatments during each growth period, the number of tubers obtained at harvest, and sugar contents were investigated. For both assessed cultivars, there was no significant difference between the control group and the 55% shading treated group with respect to the maximum quantum yield (Fv/Fm) of photosystem II under different shading treatments, whereas the 75% shading group showed slightly higher values than the control group. In both cultivars, the contents of chlorophyll a and b tended to increase in plants subjected to shading treatments compared with the control plants, particularly that of chlorophyll b. Compared with the control group, the chlorophyll b content of 'Hogammi' subjected to 55% and 75% shading increased by 47% and 41%, respectively, whereas that of 'Jinyulmi' increased by 39% and 34%, respectively. We also detected reductions in the dry weights of the above- and belowground parts of the two varieties in response to shading compared with the control, with the reduction in the dry weight of belowground parts being significant. Furthermore, in both varieties, the T/R rate tended to increase in response to shading treatment. Owing to the lack of sunlight, both cultivars tended to suppress the formation and enlargement of tuber roots. Consequently, post-harvest yield analysis revealed that under shading treatments, both cultivars were characterized by poor tuber root growth according to growing season, with the yield of 'Hogammi' showing a greater reduction compared with that of 'Jinyulmi'. In addition, we found that the higher shading level also significantly reduced yields. Compared with the storage root formation and storage root actively swelling stages, shading treatments during the storage root swelling stage significantly affected yield reduction in both varieties.

Effect of Growth Temperature and MA Storage on Quality and Storability of Red Romaine Baby Leaves (생육온도와 MA저장이 적로메인 상추 어린잎의 품질과 저장성에 미치는 영향)

  • Choi, Dam Hee;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2021
  • This study was conducted to compare the quality of baby leaves grown under several temperature conditions and the storage properties of MA storage for romaine lettuce. It was grown for 5 weeks under an artificial light source (200 µmol·m-2·s-1) in a chamber at 21℃, 28℃, and 35℃. The growth and quality of red romaine lettuce that grown in different temperatures were investigated at the end of cultivation, and the oxygen, carbon dioxide, and ethylene concentrations in the 20,000 cc OTR film and perforated film packed with lettuces were measured for 36 and 12 days, respectively. The red romaine lettuce baby leaf was examined for color, chlorophyll, and visual quality at the end of storage. The maximum quantum yield of baby leaf grown in different temperatures at 7days before the harvest was higher at 21℃ and 28℃ growth temperature treatments. On harvest day, the leaf length measured was longest at 28℃, and the leaf width was wider at 21℃ and 28℃, and the number of leaves was similar to 5-6 at all cultivation temperatures. Leaf weight, root weight, and dry weight were found to be higher at 21℃, and tended to decrease as the cultivation temperature increased. The concentration of ethylene in the film of the MA storage treatments was maintained at 1~2 µL·L-1 until the end of storage in all treatments regardless of the cultivation temperature. Oxygen concentration in the MA treatment used 20,000 OTR film was maintained at around 19.5%, and carbon dioxide concentration around 1% that was satisfied the CA conditions. Both Hunter a* and b* values were generally higher in the MA storage treatment at the end of storage day. The chlorophyll content was decreased as the cultivation temperature increased, and was lower in the MA storage treatment than in the perforated film treatment. Visual quality was 3 points or higher in the MA storage treatment at 21℃ growth treatment, and it was maintained marketability. As the above results, the growth of baby leaves of romaine lettuce was the best at 21℃ treatment, and the lower the cultivation temperature, the longer the shelf life. And it was possible to extend the shelf life by 3 times by showing excellent visual quality at the MA storage treatment that satisfies the carbon dioxide concentration of CA condition until the end of storage day.

The Philosophical Status of Scientific Theories for Science Education (과학교육을 위한 과학이론의 철학적 위치)

  • Jun-Young, Oh;Eun-Ju, Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.3
    • /
    • pp.354-372
    • /
    • 2022
  • The purpose of this study is to explore the philosophical position of various scientific theories based on the scientific worldviews for science education. In addition, it aims to expand science education, which has usually dealt with epistemology and methodology, to ontology, that is, to the problem of metaphysics. It can be said that there exists a physical realism, traditionally defined as a strong determinism of the metaphysical belief. That is fixed and unchanging objective scientific knowledge independent of our minds, which was established by Newton, Einstein and Schridinger. What can be seen in the natural laws of dynamics can be called 'mathematicization'. Einstein also shook the traditional views to some extent through the theory of relativity, but his theory was still close to traditional thinking. On the contrary, to escape from this rigid determinism, we need anthropomorphic concepts such as 'possibility' and 'chance'. It is a characteristic of the modern scientific worldviews that leads the change of scientific theory from a classically strong deterministic thought to a weak deterministic accidental accident, probability theory, and a naturalistic point of view. This can be said to correspond to Darwin's theory of evolution and quantum mechanics. We can have three types of epistemological worlds that justify this ontological worldviews. These are rationalism, empiricism and naturalism. In many cases, science education does not tell us what kind of metaphysical beliefs the scientific theories we deal with in the field of education are based on. Also, science education focuses only on the understanding of scientific knowledge. However, it can be said that true knowledge can bring understanding only when it is connected to the knowledge of learned knowledge and the learner's own metaphysical belief in the world. Therefore, in the future, science education needs to connect various scientific theories based on scientific worldviews and philosophical position and present them to students.

Analysis of Changes in Photosynthetic Ability, Photosystem II Activity, and Canopy Temperature Factor in Response to Drought S tress on Native Prunus maximowiczii and Prunus serrulate (자생 산개벚나무, 잔털벚나무의 건조 스트레스에 따른 광합성 및 광계II 활성, 엽온 인자 변화 분석)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Bae, Eun-Ji
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.405-417
    • /
    • 2022
  • The purpose of this study was to describe the photosynthetic features of Prunus maximowiczii and Prunus serrulate Lindl. var. pubescens (Makino) Nakai in response to drought stress. Specifically, we studied the effects of drought on photosynthetic ability and photosystem II activity. Drought stress (DS) was induced by cutting the water supply for 30 days. DS decreased the moisture contents in the soil, and between the 10th and 12th days of DS, both species had 10% or less of x., After the 15th day of DS, it was less than 5%, which is a condition for disease to start. We observed a remarkable decrease of maximum photosynthesis rate starting from 10th day of DS; the light compensation point was also remarkable. Dark respiration and net apparent quantum yield decreased significantly on the 15th day of DS, and then increased on the 20th day. In addition, the stomatal transpiration rate of P. maximowiczii decreased significantly on the15th day of DS, and then increased on the 20th day. Water use efficiency increased on the 15th day of DS, and then decreased on the 20th day. The stomatal transpiration rate of P. serrulate decreased significantly on the 20th day of DS, and then increased afterward, while its water use efficiency increased on the 20th day of DS, and then decreased afterward. These results indicate that the closure of stoma prevented water loss, resulting in a temporary increase of water use efficiency. Chlorophyll fluorescence analysis detected remarkable decreases in the functional index (PIABS) and energy transfer efficiency in P. maximowiczii after the 15th day of DS. Meanwhile, photosystem II activity decreased in P. serrulate after 20 days of DS. In addition, Ts-Ta, PIABS, DIO/RC, ETO/RC followed similar trends as those of the soil moisture content and photosynthetic properties, indicating that they can be used as useful variables in predicting DS in trees.

Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea (생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로)

  • Lee, Seungah;Jung, Taehyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.21-35
    • /
    • 2023
  • Expectations surrounding generative AI technology and its profound ramifications are sweeping across various industrial domains. Given the anticipated pivotal role of the startup ecosystem in the utilization and advancement of generative AI technology, it is imperative to cultivate a deeper comprehension of the present state and distinctive attributes characterizing venture capital (VC) investments within this domain. The current investigation delves into South Korea's landscape of VC investment deals and prognosticates the projected VC investments by juxtaposing these against the United States, the frontrunner in the generative AI industry and its associated ecosystem. For analytical purposes, a compilation of 286 investment deals originating from 117 U.S. generative AI startups spanning the period from 2008 to 2023, as well as 144 investment deals from 42 South Korean generative AI startups covering the years 2011 to 2023, was amassed to construct new datasets. The outcomes of this endeavor reveal an upward trajectory in the count of VC investment deals within both the U.S. and South Korea during recent years. Predominantly, these deals have been concentrated within the early-stage investment realm. Noteworthy disparities between the two nations have also come to light. Specifically, in the U.S., in contrast to South Korea, the quantum of recent VC deals has escalated, marking an augmentation ranging from 285% to 488% in the corresponding developmental stage. While the interval between disparate investment stages demonstrated a slight elongation in South Korea relative to the U.S., this discrepancy did not achieve statistical significance. Furthermore, the proportion of VC investments channeled into generative AI enterprises, relative to the aggregate number of deals, exhibited a higher quotient in South Korea compared to the U.S. Upon a comprehensive sectoral breakdown of generative AI, it was discerned that within the U.S., 59.2% of total deals were concentrated in the text and model sectors, whereas in South Korea, 61.9% of deals centered around the video, image, and chat sectors. Through forecasting, the anticipated VC investments in South Korea from 2023 to 2029 were derived via four distinct models, culminating in an estimated average requirement of 3.4 trillion Korean won (ranging from at least 2.408 trillion won to a maximum of 5.919 trillion won). This research bears pragmatic significance as it methodically dissects VC investments within the generative AI domain across both the U.S. and South Korea, culminating in the presentation of an estimated VC investment projection for the latter. Furthermore, its academic significance lies in laying the groundwork for prospective scholarly inquiries by dissecting the current landscape of generative AI VC investments, a sphere that has hitherto remained void of rigorous academic investigation supported by empirical data. Additionally, the study introduces two innovative methodologies for the prediction of VC investment sums. Upon broader integration, application, and refinement of these methodologies within diverse academic explorations, they stand poised to enhance the prognosticative capacity pertaining to VC investment costs.

  • PDF

Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species (희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과)

  • Da-Eun Gu;Sim-Hee Han;Eun-Young Yim;Jin Kim;Ja-Jung Ku
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.88-96
    • /
    • 2024
  • This study was conducted to determine the optimal light conditions for the in situ and ex situ conservation and restoration of Osmanthus insularis, a rare plant species in South Korea. Evaluations included the growth performance, leaf morphological features, photosynthetic characteristics, and photosynthetic pigment contents of seedlings grown from April to November under different light conditions (100%, 55%, 20%, and 10% relative light intensity). The shoot lengths and root collar diameters did not differ significantly with relative light intensity. The dry weights of leaves, stems, and roots and the leaf number were highest at 55% relative light intensity. The leaf shape showed morphological acclimation to light intensity, with leaf area decreasing and thickness increasing as the relative light intensity increased. Several leaf parameters, including photosynthetic rate and stomatal conductance at light saturation point, net apparent quantum yield, and dark respiration, as well as chlorophyll a, chlorophyll b, and carotenoid contents, were all highest at 55% relative light intensity. Under full light conditions, the leaves were the smallest and thickest, but the chlorophyll content was lower than at 55% relative light intensity, resulting in lower photosynthetic ability. Plants grown at 10% and 20% relative light intensity showed lower chlorophyll a, chlorophyll b, and carotenoid contents, as well as decreased photosynthetic and dark respiration rates. In conclusion, O. insularis seedlings exhibited morphological adaptations in response to light intensity; however, no physiological responses indicating enhanced photosynthetic efficiency in shade were evident. The most favorable light condition for vigorous photosynthesis and maximum biomass production in O. insularis seedlings appeared to be 55% relative light intensity. Therefore, shading to approximately 55% of full light is suggested for the growth of O. insularis seedlings.

Changes in Growth and Antioxidant Phenolic Contents of Kale according to CO2 Concentration before UV-A Light Treatment (UV-A 조사 전 CO2 농도에 따른 케일의 생육과 항산화적 페놀릭 함량 변화)

  • Jin-Hui Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.342-352
    • /
    • 2023
  • Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20℃ temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 µmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 µmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.

The Effect of Gibberellin Dipping Concentration and Treatment Time on the Growth of Cutting Propagules in Strawberry (딸기 삽목 육묘 시 묘 생육에 미치는 지베렐린 침지농도 및 시간의 영향)

  • Eun Ji Kim;Chi Seon Kim;Hyun Soo Jung;Jun Gu Lee
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.12-21
    • /
    • 2024
  • The aim of this research was to investigate the effect of gibberellin on improving seedling growth characteristics and enhancing strawberry quality in cutting propagation. Cuttings of the cultivar 'Seolhyang' were treated with GA3 for 30 and 60 minutes at concentrations of 50, 100, and 150 mg·L-1, with distilled water used for dipping as the control. Evaluation of seedling growth showed a positive correlation between the duration of gibberellin dipping and growth characteristics such as leaf number and SPAD value. Plant height, petiole length, leaf length and width, and leaf area varied significantly based on the interaction between dipping time and concentration. Crown diameter exhibited differences depending on the dipping time, with cuttings producing superior seedlings having a diameter of 8.0 mm or more for all treatments except the 30-minute, 100 mg·L-1 treatment. The T/R ratio was significantly lower in the 30-minute, 50 mg·L-1 treatment, indicating the highest plant vigor. Quantum yield was lower at a concentration of 150 mg·L-1, showing a decreasing trend with increasing gibberellin concentration. Nonphotochemical quenching was significantly smaller in the 30-minute, 150 mg·L-1 treatment, indicating an effective reduction of stress in the cuttings. Antioxidant content was highest in the 30-minute, 50 mg·L-1 treatment and the 60-minute, 150 mg·L-1 treatment. Moreover, the results of post-transplanting growth assessment showed no negative effect of gibberellin on flowering induction. Therefore, it was confirmed that gibberellin treatment during the cutting propagation of 'Seolhyang' strawberries had a positive effect on the production of high-quality seedlings. Dipping the cuttings in 50 mg·L-1 gibberellin for 30 minutes is considered to be the most suitable method for improving growth and quality compared to the control.

Comparison of Seedling Quality of Cucumber Seedlings and Growth and Production after Transplanting according to Differences in Seedling Production Systems (육묘 생산 시스템 차이에 따른 오이 모종의 묘소질과 정식 후 생육 비교)

  • Soon Jae Hyeon;Hwi Chan Yang;Young Ho Kim;Yun Hyeong Bae;Dong Cheol Jang
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.88-98
    • /
    • 2024
  • This study provides basic data on the growth and production of seedlings produced in plant factories with artificial lighting by comparing seedling quality, growth and fruit characteristics, and production after transplanting cucumber seedlings according to environmental differences between plant factories with artificial lighting and conventional nurseries in greenhouse. The control group consisted of greenhouse seedlings (GH) grown in the conventional nursery before transplanting. Plant factory to greenhouse seedlings (PG) were grown for 9 days in a plant factory with artificial lighting and for 13 days in an conventional nursery. Plant factory seedlings (PF) were grown in a plant factory with artificial lighting for 22 days until planting. In terms of seedling quality, PFs had the highest relative growth rate and compactness and the best root zone development. After transplanting PFs tended to grow faster, the first harvest date was 2 days earlier than that of GHs, and the growing season ended 1 day earlier. The female flower flowering rate of the PFs was high, and the fruit set rate was of PF the lowest. The production per unit area was highest for PFs at 10.23kg Performance index on the absorption basis, the most sensitive chlorophyll fluorescence parameter, was highest at 4.14 for PFs at 4 weeks after transplantation. By comparing the maximum quantum yield of primary PS II photochemistry and dissipated energy flux per PS II reaction center electron at 4 weeks after transplantation, PFs tended to be the least stressed. PFs had the best seedling quality, growth, and production after planting, and fruit quality was consistent with that of greenhouse seedlings. Therefore, plant factory seedlings can be used in the field.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.