• Title/Summary/Keyword: quantum

Search Result 3,927, Processing Time 0.031 seconds

Shape Ellipticity Dependence of Exciton Fine Levels and Optical Nonlinearities in CdSe and CdTe Nanocrystal Quantum Dots

  • Yang, Hanyi;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Shape ellipticity dependence of the exciton fine energy levels in CdTe and CdSe nanocrystal quantum dots were compared theoretically by considering the crystal structure and the Coulomb interaction of an electron and a hole. While quantum dot ellipticity changes from an oblate to prolate quantum dot via spherical shape, both the fine energy levels and the dipole moment in wurtzite structure of a CdSe quantum dot change linearly for ellipticity. In contrast, CdTe quantum dots were found to show a level crossing between the bright and dark exciton states with a significant change of the dipole moment due to the cubic structure. Shape ellipticity dependence of the optical nonlinearities in CdTe and CdSe nanocrystal quantum dots was also calculated by using semiconductor Bloch equations. For a spherical shape quantum dot, only $1^L$ dominates the optical nonlinearities in a CdSe quantum dot, but both $1^U$ and $0^U$ contribute in a CdTe quantum dot. As excitation pulse area becomes strong (${\sim}{\pi}$), the optical nonlinearities of both CdSe and CdTe quantum dots are mainly governed by absorption saturation. However, in the case of a prolate CdTe quantum dot, the real part of the nonlinear refractive index becomes relatively significant.

Big Wave in R&D in Quantum Information Technology -Quantum Technology Flagship (양자정보기술 연구개발의 거대한 물결)

  • Hwang, Y.;Baek, C.H.;Kim, T.;Huh, J.D.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.75-85
    • /
    • 2019
  • Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.

QUANTUM CODES WITH IMPROVED MINIMUM DISTANCE

  • Kolotoglu, Emre;Sari, Mustafa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.609-619
    • /
    • 2019
  • The methods for constructing quantum codes is not always sufficient by itself. Also, the constructed quantum codes as in the classical coding theory have to enjoy a quality of its parameters that play a very important role in recovering data efficiently. In a very recent study quantum construction and examples of quantum codes over a finite field of order q are presented by La Garcia in [14]. Being inspired by La Garcia's the paper, here we extend the results over a finite field with $q^2$ elements by studying necessary and sufficient conditions for constructions quantum codes over this field. We determine a criteria for the existence of $q^2$-cyclotomic cosets containing at least three elements and present a construction method for quantum maximum-distance separable (MDS) codes. Moreover, we derive a way to construct quantum codes and show that this construction method leads to quantum codes with better parameters than the ones in [14].

Technology Trends of Fault-tolerant Quantum Computing (결함허용 양자컴퓨팅 시스템 기술 연구개발 동향)

  • Hwang, Y.;Kim, T.W.;Baek, C.H.;Cho, S.U.;Kim, H.S.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Similar to present computers, quantum computers comprise quantum bits (qubits) and an operating system. However, because the quantum states are fragile, we need to correct quantum errors using entangled physical qubits with quantum error correction (QEC) codes. The combination of entangled physical qubits with a QEC protocol and its computational model are called a logical qubit and fault-tolerant quantum computation, respectively. Thus, QEC is the heart of fault-tolerant quantum computing and overcomes the limitations of noisy intermediate-scale quantum computing. Therefore, in this study, we briefly survey the status of QEC codes and the physical implementation of logical qubit over various qubit technologies. In summary, we emphasize 1) the error threshold value of a quantum system depends on the configurations and 2) therefore, we cannot set only any specific theoretical and/or physical experiment suggestion.

Post-Quantum Security Strength Evaluation through Implementation of Quantum Circuit for SIMECK (SIMEC 경량암호에 대한 양자회로 구현 및 Post-Quantum 보안 강도 평가)

  • Song Gyeong Ju;Jang Kyung Bae;Sim Min Joo;Seo Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.6
    • /
    • pp.181-188
    • /
    • 2023
  • Block cipher is not expected to be safe for quantum computer, as Grover's algorithm reduces the security strength by accelerating brute-force attacks on symmetric key ciphers. So it is necessary to check the post-quantum security strength by implementing quantum circuit for the target cipher. In this paper, we propose the optimal quantum circuit implementation result designed as a technique to minimize the use of quantum resources (qubits, quantum gates) for SIMECK lightweight cryptography, and explain the operation of each quantum circuit. The implemented SIMECK quantum circuit is used to check the estimation result of quantum resources and calculate the Grover attack cost. Finally, the post-quantum strength of SIMECK lightweight cryptography is evaluated. As a result of post-quantum security strength evaluation, all SIMECK family cipher failed to reach NIST security strength. Therefore, it is expected that the safety of SIMECK cipher is unclear when large-scale quantum computers appear. About this, it is judged that it would be appropriate to increase the block size, the number of rounds, and the key length to increase the security strength.

Polar Quantum Channel Coding for Symmetric Capacity Achieving (대칭용량 달성을 위한 극 퀀텀 채널 코딩)

  • Yang, Jae Seung;Park, Ju Yong;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.3-14
    • /
    • 2013
  • We demonstrate a fashion of quantum channel combining and splitting, called polar quantum channel coding, to generate a quantum bit (qubit) sequence that achieves the symmetric capacity for any given binary input discrete quantum channels. The present capacity is achievable subject to input of arbitrary qubits with equal probability. The polarizing quantum channels can be well-conditioned for quantum error-correction coding, which transmits partially quantum data through some channels at rate one with the symmetric capacity near one but at rate zero through others.

Quantum Secret Sharing Scheme with Credible Authentication based on Quantum Walk

  • Li, Xue-Yang;Chang, Yan;Zhang, Shi-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3116-3133
    • /
    • 2020
  • Based on the teleportation by quantum walk, a quantum secret sharing scheme with credible authentication is proposed. Using the Hash function and quantum local operation, combined with the two-step quantum walks circuit on the line, the identity authentication and the teleportation of the secret information in distribution phase are realized. Participants collaborate honestly to recover secret information based on particle measurement results, preventing untrusted agents and external attacks from obtaining useful information. Due to the application of quantum walk, the sender does not need to prepare the necessary entangled state in advance, simply encodes the information to be sent in the coin state, and applies the conditional shift operator between the coin space and the position space to produce the entangled state necessary for quantum teleportation. Security analysis shows that the protocol can effectively resist intercept/resend attacks, entanglement attacks, participant attacks, and impersonation attacks. In addition, the quantum walk circuit used has been implemented in many different physical systems and experiments, so this quantum secret sharing scheme may be achievable in the future.

The Future of Quantum Information: Challenges and Vision

  • Kim, Dohyun;Kang, Jungho;Kim, Tae Woo;Pan, Yi;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.151-162
    • /
    • 2021
  • Quantum information has passed the theoretical research period and has entered the realization step for its application to the information and communications technology (ICT) sector. Currently, quantum information has the advantage of being safer and faster than conventional digital computers. Thus, a lot of research is being done. The amount of big data that one needs to deal with is expected to grow exponentially. It is also a new business model that can change the landscape of the existing computing. Just as the IT sector has faced many challenges in the past, we need to be prepared for change brought about by Quantum. We would like to look at studies on quantum communication, quantum sensing, and quantum computing based on quantum information and see the technology levels of each country and company. Based on this, we present the vision and challenge for quantum information in the future. Our work is significant since the time for first-time study challengers is reduced by discussing the fundamentals of quantum information and summarizing the current situation.