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Abstract. The methods for constructing quantum codes is not always

sufficient by itself. Also, the constructed quantum codes as in the clas-
sical coding theory have to enjoy a quality of its parameters that play

a very important role in recovering data efficiently. In a very recent
study quantum construction and examples of quantum codes over a fi-

nite field of order q are presented by La Garcia in [14]. Being inspired

by La Garcia’s the paper, here we extend the results over a finite field
with q2 elements by studying necessary and sufficient conditions for con-

structions quantum codes over this field. We determine a criteria for the

existence of q2-cyclotomic cosets containing at least three elements and
present a construction method for quantum maximum-distance separable

(MDS) codes. Moreover, we derive a way to construct quantum codes and

show that this construction method leads to quantum codes with better
parameters than the ones in [14].

1. Introduction

Since Shor discovered the first quantum code that encodes one qubit to
highly entangled state of nine qubits [20], quantum error correcting codes have
been intensively studied by researchers. A q-ary quantum code of length n is
a subspace of qn-dimensional Hilbert space H = Cq ⊗ Cq ⊗ · · · ⊗ Cq︸ ︷︷ ︸

n times

where Cq

is the q-dimensional complex vector space and the bar ⊗ denotes the tensor
product. The notation [[n, k, d]]q denotes a quantum code having the param-

eters, length n, dimension qk and minimum distance d, where the parameter
d indicates the error detecting and correcting capability, i.e., a quantum code
with minimum distance d can detect up to d−1 errors and correct up to

⌊
d−1

2

⌋
errors.

One of the main and most difficult problems in quantum error correction
is to construct quantum codes having better parameters, i.e., having large
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minimum distance and large dimension for a fixed length. Nevertheless, there
is a restriction on the dimension and the minimum distance for a fixed length.

Proposition 1.1 (Singleton bound for quantum codes, [2,12]). For an [[n, k, d]]q
quantum code, k ≤ n− 2d+ 2.

An [[n, k, d]]q quantum code is called maximum-distance separable (MDS)
code if its parameters satisfy k = n − 2d + 2. Lately, there have been many
studies on the construction of quantum MDS codes [6–11, 14, 17, 19, 22]. On
the other hand, the construction of quantum codes that do not have to be
MDS and have better parameters than previously constructed ones also have
had much attention [4, 5, 15, 16, 18, 21]. These studies motivate us to derive
quantum codes with better parameters. Via Hermitian construction, we derive
good quantum codes from cyclic codes over Fq2 and show that these quantum
codes are better than ones derived in [15].

We organize this paper as follows: In Section 2, we give fundamental con-
cepts. In Section 3, by seeking the condition for q2-cyclotomic cosets to contain
m-consecutive terms and using Hermitian construction, we construct a family
of quantum MDS codes. In Section 4, we explore a way to construct quantum
codes that have better parameters than quantum codes derived in [15]. In Sec-
tion 5, we compare our results with the parameters in [15]. We conclude the
paper in Section 6.

2. Preliminaries

An [n, k, d]q linear code is a k-dimensional subspace of Fnq , where n is the

length, k is the dimension and d is the minimum distance. Let F×q be the

multiplicative group of the finite field Fq and α ∈ F×q . A linear code C of
length n over Fq is an α-constacyclic code if (αcn−1, c0, . . . , cn−2) ∈ C when-
ever (c0, c1, . . . , cn−1) ∈ C. In particular, if α = 1, then this constacyclic code
is called cyclic code. Let (n, q) = 1. Since an α-constacyclic code C of length

n over Fq can be viewed as an ideal in the quotient ring
Fq [x]
〈xn−α〉 , C = 〈g (x)〉

where g (x)|xn − α. Let r denote the multiplicative order of α in F×q . Since

(n, q) = 1, there exists an rnth primitive root β of unity in an extension of Fq
such that βn = α and all roots of xn−α over Fq are β, β1+r, . . . , β1+(n−1)r. The
q-cyclotomic coset containing i modulo rn is Cq,rn (i) =

{
iqj mod rn : j ∈ N

}
and the defining set of an α-constacyclic code C = 〈g (x)〉 of length n is
Z =

{
i ∈ {0, 1, . . . , n− 1} : g

(
β1+ri

)
= 0
}

. Note that the dimension of an
α-constacyclic code of length n and defining set Z is n − |Z|. The following
gives a lower bound for the minimum distance of a constacyclic code.

Theorem 2.1 (BCH bound for constacyclic codes, [3, 13]). Let (n, q) = 1.
Let β be an rnth primitive root of unity with βn = α where α ∈ F×q2 and r

is the multiplicative order of α in F×q2 . Then, the minimum distance of an
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α-constacyclic code of length n over Fq2 with the defining set including the set
{1 + rj, l ≤ j ≤ l + d− 2} is at least d.

The Euclidean dual C⊥E of a linear code C is the set

(1) C⊥E =

{
y ∈ Fnq :

n−1∑
i=0

xiyi = 0, ∀x ∈ C

}
and the Hermitian dual C⊥H of a linear code C over Fq2 is the set

(2) C⊥H =

{
y ∈ Fnq2 :

n−1∑
i=0

x
i
yqi = 0, ∀x ∈ C

}
.

The following is crucial in constructing quantum codes from constacyclic codes.

Lemma 2.2. Let α be a nonzero element in Fq2 whose multiplicative order
divides q + 1. Suppose that C1 is a cyclic code over Fq with length n and
defining set Z1 and C2 is an α-constacyclic code over Fq2 with length n and
defining set Z2. Let (n, q) = 1. Then,

(1) [1] C⊥E
1 ≤ C1 ⇔ −Z1 ∩ Z1 = ∅.

(2) [11] C⊥H
2 ≤ C2 ⇔ −qZ2 ∩ Z2 = ∅.

We say that C is a dual-containing code if C⊥E ≤ C and a Hermitian dual-
containing code if C⊥H ≤ C.

One of the famous quantum code constructions is Calderbank-Shor-Steane
(CSS) construction. For a dual-containing linear code, CSS construction turns
into:

Theorem 2.3 ([2]). If there exists a dual-containing [n, k, d]q linear code, then

there exists an [[n, 2k − n,≥ d]]q stabilizer quantum code which is pure to d.

Called as Hermitian construction, another famous quantum code construc-
tion in the literature is as follows:

Theorem 2.4 ([2, 12]). If there exists a Hermitian dual-containing [n, k, d]q2
linear code, then there exists an [[n, 2k − n,≥ d]]q quantum code that is pure to
d.

3. Quantum codes derived from constacyclic codes

In [15], La Guardia gives a condition for the existence of q-cyclotomic cosets
containing m-consecutive terms and presents a new method for obtaining some
new quantum codes from cyclic codes over Fq by using CSS construction. In
[5], Jian Gao et al. consider the results derived in [15] for negacyclic codes over
Fq and obtain new quantum codes. In this section, we extend this notion to
constacyclic codes over Fq2 . We give a criteria for a q2-cyclotomic coset over Fq2
to contain m-consecutive terms and by using Hermitian construction we obtain
a class of quantum MDS codes from Hermitian-dual containing constacyclic
codes whose defining sets are these q2-cyclotomic cosets. We also tabulate
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the parameters of some quantum codes that we derive by this way. We note
that throughout this section, α is an element of the finite field Fq2 with the
multiplicative order r.

Proposition 3.1. Let q be a prime power and n be an integer such that (q, n) =
1. If there exist some integers 1 ≤ a1, a2, . . . , am−1 ≤ orn

(
q2
)
, m ≥ 3 such

that n| gcd (λ1, λ2, . . . , λm−2), where λj =
(
q2aj+1−1

r

)−1

−
(
q2a1−1

r

)−1

− jr

for 1 ≤ j ≤ m − 2, then there exists an α-constacyclic code over Fq2 with
parameters [n, n− δ, d ≥ m+ 1]q2 , where δ is the size of q2-cyclotomic coset
modulo rn containing m-consecutive terms.

Proof. Consider the following system of congruences

kq2a1 ≡ k + r mod rn

(k + r) q2a2 ≡ k + 2r mod rn

(k + 2r) q2a3 ≡ k + 3r mod rn

...

(k + (m− 2) r) q2am−1 ≡ k + (m− 1) r mod rn,

where m ≥ 2. The above system of congruences implies (k + jr)
(
q2aj+1−1

r

)
≡

1 mod n for all 0 ≤ j ≤ m − 2 and so we get the following system which is
equivalent to above:

k ≡
(
q2a1 − 1

r

)−1

mod n

k ≡
(
q2a2 − 1

r

)−1

− r mod n

k ≡
(
q2a3 − 1

r

)−1

− 2r mod n

...

k ≡
(
q2am−1 − 1

r

)−1

− (m− 2) r mod n,

where
(
q2ai−1
r

)−1

indicates the multiplicative inverse of q
2ai−1
r modulo n. The

last system has a solution if and only if

(3)

(
q2aj+1 − 1

r

)−1

− jr ≡
(
q2ai+1 − 1

r

)−1

− ir mod n

for all i, j = 1, . . . ,m− 2 and

(4)

(
q2a1 − 1

r

)−1

≡
(
q2aj+1 − 1

r

)−1

− jr mod n
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Table 1. Some parameters of quantum codes obtained by
Theorem 3.2

n r a1, a2, . . . , am−1 [[n, k, d]]q
17 3 2,7 [[17, 1, d ≥ 4]]5
29 6 1,2,8 [[29, 1, d ≥ 5]]11

for all j = 1, . . . ,m− 2. This implies that

(5) n divides

(
q2aj+1 − 1

r

)−1

−
(
q2a1 − 1

r

)−1

− jr

for each j=1, . . . ,m−2. The last assertion means that n| gcd (λ1, λ2, . . . , λm−2),

where λj =
(
q2aj+1−1

r

)−1

−
(
q2a1−1

r

)−1

− jr for every j = 1, . . . ,m− 2. Take

C as an α-constacyclic code over Fq2 whose defining set is Cq2,rn (k). From the
above construction, Cq2,rn (k) contains m-consecutive integers k, k+ r, . . . , k+

(m− 1)r. Since
∣∣Cq2,rn (k)

∣∣ = δ, and by the BCH bound for constacyclic codes
the minimum distance d of C is at least m+1, one gets an [n, n− δ, d ≥ m+ 1]q2
constacyclic code. �

Theorem 3.2. Suppose that all the hypotheses of Proposition 3.1 hold. Let
Cq2,rn (k) be a q2-cyclotomic coset containing m-consecutive terms. If

−qCq2,rn (k) 6= Cq2,rn (k) ,

then there exists a quantum code with parameters [[n, n− 2δ, d ≥ m+ 1]], where
δ =

∣∣Cq2,n (k)
∣∣.

Proof. Let C be an α-constacyclic code of length n over Fq2 having the defining
set Cq2,rn (k). It follows from −qCq2,rn (k) 6= Cq2,rn (k) and Lemma 2.2 that

C⊥h ≤ C. Therefore, by Hermitian construction, one gets a quantum code
with desired parameters. �

Now, we present some parameters that are tabulated in Table 1 to illus-
trate Theorem 3.2. The integers a1, a2, . . . , am−1 appeared in Table 1 are ones
satisfying the condition given in Proposition 3.1.

Proposition 3.3. Let k ≥ 1 be an integer. Then,

(1)
(
2k + 1, 22k + 1

)
= 1.

(2)
(
2k − 1, 22k + 1

)
= 1.

Proof. (1) Since
(
2k + 1

) (
22k − 22k−1 − 2k−1 + 1

)
= 1+

(
2k − 2k−1

) (
22k + 1

)
,

we get
(
2k + 1

) (
22k − 22k−1 − 2k−1 + 1

)
≡ 1 mod

(
22k + 1

)
. This implies that(

2k + 1, 22k + 1
)

= 1.

(2) Since
(
2k − 1

) (
2k − 1

)
2k−1 = 1 +

(
2k−1 − 1

) (
22k + 1

)
, it follows that(

2k − 1
) (

2k − 1
)

2k−1 ≡ 1 mod
(
22k + 1

)
. This means

(
2k − 1, 22k + 1

)
= 1.

�
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Lemma 3.4. Let q = 2k, k ≥ 1 and r = q + 1. Suppose that n = q2+1
λ ≥ 5.

(1) For each 0 ≤ j ≤ q − 1, Cq2,rn (1 + rj) = {1 + rj, 1 + r (q − 1− j)}.
(2) −qCq2,rn

(
1 + (q+1)q

2

)
6= Cq2,rn

(
1 + (q+1)q

2

)
.

Proof. (1) It follows from q2r ≡ −r mod rn that

q2 (1 + rj) ≡ 1 + r (q − 1− j) mod rn.

Since orn
(
q2
)

= 2, for each 0 ≤ j ≤ q − 1, we get

Cq2,rn (1 + rj) = {1 + rj, 1 + r (q − 1− j)} .

(2) Suppose that −qCq2,rn
(

1 + (q+1)q
2

)
= Cq2,rn

(
1 + (q+1)q

2

)
. Then, we

have two cases: −q
(

1 + (q+1)q
2

)
≡ 1 + (q+1)q

2 mod rn or −q
(

1 + (q+1)q
2

)
≡

1 + (q+1)(q−2)
2 mod rn.

Case 1: Assume that −q
(

1 + (q+1)q
2

)
≡ 1 + (q+1)q

2 mod rn. This implies

that 1 + (q+1)q
2 ≡ 0 mod n. Since (2, n) = 1, we get q2 + q + 2 ≡ 0 mod n and

so q+1 ≡ 0 mod n. The last assertion is a contradiction because (q + 1, n) = 1
by Proposition 3.3(1).

Case 2: Assume that −q
(

1 + (q+1)q
2

)
≡ 1+ (q+1)(q−2)

2 mod rn. Then, we get

(q+1)q
2 ≡ 0 mod n. Since (2, n) = 1, q2 + q ≡ 0 mod n. This is a contradiction

because (q − 1, n) = 1 by Proposition 3.3(2). �

As a corollary of Theorem 3.2 and Lemma 3.4, we give a class of quantum
MDS codes which was also derived by Lingfei Jin et al. in [8].

Theorem 3.5. Let q = 2k, k ≥ 1. Then, for each positive integer λ dividing

q2 + 1 such that q2+1
λ ≥ 5, there exists a quantum MDS code with parameters[[

q2+1
λ , q

2+1
λ − 4, 3

]]
q
.

Proof. Let n = q2+1
λ ≥ 5 and r = q + 1. Let C be an α-constacyclic code of

length n over Fq2 having the defining set Cq2,rn
(
1 + r q2

)
. By Lemma 3.4(2),

−qCq2,rn
(
1 + r q2

)
6= Cq2,rn

(
1 + r q2

)
and by Lemma 2.2(2), C⊥H

2 ≤ C2. By

Lemma 3.4(1), Cq2,rn
(
1 + r q2

)
has exactly two elements which are consecu-

tive. Therefore, by Theorem 3.2, we get an [[n, n− 4, d ≥ 3]]q quantum code.
By Proposition 1.1, this quantum code is an MDS code of the parameters
[[n, n− 4, 3]]q. �

4. Construction of good quantum codes

In [15], La Guardia derived some new quantum codes from dual-containing
cyclic codes over Fq by using CSS construction. In this section, by considering
cyclic codes over higher alphabet Fq2 and using Hermitian construction, we
construct some quantum codes whose parameters are better than ones in [15].



QUANTUM CODES WITH IMPROVED MINIMUM DISTANCE 615

When compared to quantum codes obtained from dual-containing cyclic codes
over Fq with CSS construction, we deduce that quantum codes obtained from
cyclic codes over Fq2 with Hermitian construction are of better parameters.

Let (n, q) = 1 and on (q) = 2m, m ≥ 1. Then, clearly on
(
q2
)

= m. This

means that
∣∣Cq2,n (i)

∣∣ = t if |Cq,n (i)| = 2t, where t|m. Suppose that Cq,n (i) is
a q-cyclotomic coset that contains d consecutive terms and provides −Cq,n (i) 6=
Cq,n (i). Take C as a cyclic code of length n over Fq with defining set Cq,n (i).
In this case, since C⊥E ≤ C and d (C) ≥ d + 1, by CSS construction one gets
an [[n, n− 4t,≥ d+ 1]]q quantum code. Since Cq2,n (i) =

{
i, iq2, . . . , iq2t−2

}
and Cq2,n (iq) =

{
iq, iq3, . . . , iq2t−1

}
, we get Cq,n (i) = Cq2,n (i) ∪ Cq2,n (iq).

Hence, it is enough to prove that −qCq,n (i)∩Cq,n (k) = ∅ whenever −Cq,n (i)∩
Cq,n (k) = ∅ to construct a quantum code with the same parameters from
Hermitian dual-containing cyclic code over Fq2 having defining set Cq2,n (i) ∪
Cq2,n (iq) via Hermitian construction.

Proposition 4.1. −qCq,n (i)∩Cq,n (k) = ∅ if and only if −Cq,n (i)∩Cq,n (k) =
∅.

Proof. Since (n, q) = 1 and two cyclotomic cosets are the same or distinct, we
get −i ≡ kqj (modn) ⇔ −qi ≡ kqj+1 (modn) for some j, which completes
the proof. �

Proposition 4.1 guarantees that all parameters obtained in [15] can be also
derived from cyclic codes over Fq2 with Hermitian construction. Let us give an
example to illustrate this. We use the notation Cq,n (i, k) instead of Cq,n (i) ∪
Cq,n (k).

Example 1. Let C be a cyclic code over F13 of length 35 with the defining
set C13,35 (3) = {3, 4, 17, 11}. See that −C13,35 (3) ∩ C13,35 (3) = ∅. By CSS
construction, one gets a quantum code with the parameters [[35, 27,≥ 3]]13 from
the cyclic code C, which was constructed in [15]. See that C132,35 (3) = {3, 17}
and C132,35 (4) = {4, 11}. Take C ′ as a cyclic code over F132 of length 35 with
the defining set Z = C132,35 (3, 4). Proposition 4.1 ensures that Z ∩ −13Z = ∅
and by Lemma 2.2, C ′

⊥H ≤ C ′. By Hermitian construction, we get a quantum
code with same parameters [[35, 27,≥ 3]]13.

We show that Hermitian dual-containing cyclic codes over Fq2 are more
fertile than dual-containing cyclic codes over Fq to construct quantum codes.

Proposition 4.2. Suppose that n| q2m+1 for some m ≥ 1. Then, −Cq,n (i) =
Cq,n (i). Moreover, −qCq2,n (i) = Cq2,n (iq).

Proof. Since q2m ≡ −1 (modn), −1 ∈ Cq,n (1) and −Cq,n (1) = Cq,n (1).
So, −Cq,n (i) = Cq,n (i) for any 0 ≤ i ≤ n − 1 and by Proposition 4.1, we
get −qCq,n (i) = Cq,n (i). It follows from q2m ≡ −1 (modn) that −qi ≡
q2m+1i (modn). This implies that −qi ∈ Cq2,n (iq) and so −qCq2,n (i) =
Cq2,n (iq). �
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Proposition 4.2 says that for length n dividing q2m+1, one can not construct
a quantum code from dual-containing cyclic codes of length n over Fq using CSS
construction since there doesn’t exist a dual-containing cyclic code of length n
over Fq as a result of −Cq,n (i) = Cq,n (i) for all 0 ≤ i ≤ n− 1.

Example 2. Let q = 7 and n = 65. Then, 65| 76 + 1 and by Proposition
4.2, −C7,65 (i) = C7,65 (i) for all i. Hence, it is impossible to find a non-
trivial cyclic code over F7 of length 65 containing its Euclidean dual and
so to construct quantum codes from these cyclic codes via CSS construc-
tion. However, consider cyclic codes over F72 and 72-cyclotomic cosets modulo
65. Note that −7C72,65 (2) = C72,65 (9) and C72,65 (2) = {2, 8, 32, 33, 57, 63}.
If C1 is a cyclic code with defining set Z1 = C72,65 (2), then C⊥H

1 ≤ C1

and via Hermitian construction we get [[65, 53, d ≥ 3]]7 quantum code. See
that −7C72,65 (6) = C72,65 (22) and C72,65 (6) = {6, 24, 31, 34, 41, 59}. If C2

is a cyclic code with defining set Z2 = C72,65 (2, 6), then C⊥H
2 ≤ C2 and

via Hermitian construction we get [[65, 41, d ≥ 5]]7 quantum code. See that
−7C72,65 (10) = C72,65 (5) and C72,65 (10) = {10, 25, 30, 35, 40, 55}. If C3 is a

cyclic code with defining set Z3 = C72,65 (2, 6, 10), then C⊥H
3 ≤ C3 and via

Hermitian construction we get [[65, 29, d ≥ 7]]7 quantum code.

Note that 2
∣∣Cq2,n (i)

∣∣ = |Cq,n (i)| if 2| |Cq,n (i)|. This fact enables us to
derive quantum codes with better parameters than ones in [15].

Example 3. Let q = 11 and n = 63. In [15], La Guardia obtained a
[[63, 39, d ≥ 4]]11 quantum code from dual-containing cyclic codes over F11.
However, via Hermitian construction we get a [[63, 39, d ≥ 7]]11 quantum code
from the cyclic code with defining set Z1 = C112,63 (3, 8, 9, 10), which is clearly
better than [[63, 39, d ≥ 4]]11. In fact, via dual-containing cyclic codes over F11,
the best parameters with d ≥ 4 are [[63, 45, d ≥ 4]]11. Via Hermitian construc-
tion we get [[63, 45, d ≥ 5]]11 quantum code from the cyclic code with defining
set Z2 = C112,63 (3, 8, 10) that is better than [[63, 45, d ≥ 4]]11.

5. Code comparison

As stated by La Guardia in [15], unfortunately it seems that an available
source for quantum codes over large alphabets in the literature doesn’t exist.
Therefore, we take the parameters in Table 1 given by La Guardia in [15] as
known parameters of quantum codes over large alphabets. In the Tables 2,
3 and 4, we compare our results with these parameters in [15]. In Table 2,
we give the parameters of quantum codes which are better than ones listed in
Table 1 in [15].

For some lengths and alphabets, we also obtain better quantum codes than
the best ones that can be obtained via the construction derived in [15] and we
list these parameters in Tables 3 and 4.

For instance, as the best quantum code with length 32 and least minimum
distance 3 over F9 according to the construction given in [15] is [[32, 22, d ≥ 3]]9,
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Table 2. A comparison between our parameters and ones in [15]

Defining set Our quantum code Quantum code in [15]

C112,63 (3, 8, 9, 10) [[63, 39, d ≥ 7]]11 [[63, 39, d ≥ 4]]11

C112,63 (3, 8, 10) [[63, 45, d ≥ 5]]11 [[63, 39, d ≥ 4]]11

C272,35 (1, 2, 3, 4) [[35, 19, d ≥ 5]]27 [[35, 19, d ≥ 4]]27

Table 3. A comparison of quantum codes of length 32 over F9

d Quantum code in [15] Our quantum code Defining set

d ≥ 3 [[32, 22, d ≥ 3]]9 [[32, 26, d ≥ 3]]9 C92,32 (1, 2)
d ≥ 4 [[32, 18, d ≥ 4]]9 [[32, 24, d ≥ 4]]9 C92,32 (2, 3, 4)
d ≥ 5 [[32, 10, d ≥ 5]]9 [[32, 20, d ≥ 5]]9 C92,32 (1, 2, 3, 4)
d ≥ 6 [[32, 8, d ≥ 6]]9 [[32, 18, d ≥ 6]]9 C92,32 (4, 5, 6, 7, 8)

Table 4. A comparison of quantum codes of length 35 over F13

d Quantum code in [15] Our quantum code Defining set

d ≥ 4 [[35, 19, d ≥ 4]]13 [[35, 23, d ≥ 4]]13 C132,35 (1, 2, 3)
d ≥ 5 [[35, 11, d ≥ 5]]13 [[35, 19, d ≥ 5]]13 C132,35 (1, 2, 3, 4)

we obtain a [[32, 26, d ≥ 3]]9 quantum code from cyclic codes over F92 via Her-
mitian construction. We list more parameters of quantum codes with length
32 over F9 in Table 3.

Furthermore, as the best quantum code with length 35 and least minimum
distance 4 over F13 according to the construction given in [15] is [[35, 19, d≥4]]13,
we get a [[35, 23, d ≥ 4]]13 quantum code from cyclic codes over F132 via Her-
mitian construction. We list more parameters of quantum codes with length
35 over F13 in Table 4.

Moreover, as an illustration of Proposition 4.2, we derive some quantum
codes that can not be obtained via the construction given in [15] and we list
the parameters of these quantum codes in Table 5.

6. Conclusion

We obtain a condition for a q2-cyclotomic coset to contain at least three
consecutive elements and give a construction for a class of quantum MDS codes.
Furthermore, by making use of cyclic codes over higher alphabet Fq2 instead
of Fq and Hermitian construction, we get better quantum codes than quantum
codes derived in [15] and tabulate their parameters in Tables 2, 3, 4 and 5.
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Table 5. List of some quantum codes that can not be ob-
tained via the construction given in [15]

n q m Quantum code Defining set

17 7 2 [[17, 1, d ≥ 4]]7 C72,17 (3)
25 13 5 [[25, 5, d ≥ 3]]13 C132,25 (2)
25 13 5 [[25, 1, d ≥ 4]]13 C132,25 (1, 10)
29 11 7 [[29, 1, d ≥ 5]]11 C112,29 (1)
37 19 9 [[37, 1, d ≥ 5]]19 C192,37 (1)
37 23 3 [[37, 25, d ≥ 3]]23 C232,37 (1)
37 23 3 [[37, 13, d ≥ 5]]23 C232,37 (1, 9)
37 23 3 [[37, 1, d ≥ 6]]23 C232,37 (1, 5, 9)
41 7 5 [[41, 1, d ≥ 6]]7 C72,41 (3)
41 27 2 [[41, 33, d ≥ 3]]27 C272,41 (4)
41 27 2 [[41, 25, d ≥ 4]]27 C272,41 (3, 4)
41 27 2 [[41, 17, d ≥ 5]]27 C272,41 (2, 3, 4)
41 32 1 [[41, 37, d ≥ 2]]32 C322,41 (1)
41 32 1 [[41, 33, d ≥ 3]]32 C322,41 (1, 2)
41 32 1 [[41, 29, d ≥ 4]]32 C322,41 (1, 2, 3)
53 23 1 [[53, 49, d ≥ 2]]23 C232,53 (1)
53 23 1 [[53, 45, d ≥ 3]]23 C232,53 (1, 2)
53 23 1 [[53, 41, d ≥ 4]]23 C232,53 (1, 2, 3)
53 23 1 [[53, 37, d ≥ 5]]23 C232,53 (1, 2, 3, 4)
53 23 1 [[53, 33, d ≥ 6]]23 C232,53 (1, 2, 3, 4, 5)
53 23 1 [[53, 29, d ≥ 7]]23 C232,53 (1, 2, 3, 4, 5, 6)
61 32 3 [[61, 49, d ≥ 3]]32 C322,61 (1)
61 32 3 [[61, 37, d ≥ 5]]32 C322,61 (1, 12)
61 32 3 [[61, 25, d ≥ 7]]32 C322,61 (2, 7, 11)
65 7 3 [[65, 53, d ≥ 3]]7 C72,65 (2)
65 7 3 [[65, 41, d ≥ 5]]7 C72,65 (2, 6)
65 7 3 [[65, 29, d ≥ 7]]7 C72,65 (2, 6, 10)
73 17 6 [[73, 49, d ≥ 5]]17 C172,73 (4)
73 17 6 [[73, 25, d ≥ 7]]17 C172,73 (4, 13)
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