• Title/Summary/Keyword: quantitative risk assessment

Search Result 494, Processing Time 0.027 seconds

Safety Management Information System in Roads Construction Work (도로 건설공사의 안전관리정보시스템 개발)

  • Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • There are insufficient models that find problems and solutions for accident prevention through risk assessment and suggest safe work process and work instruction from foundation works to finish work for accident decrease. This paper presents a quantitative risk assessment model by analysis of risk factors in each process such as earth works, drainage works, pavement works, appurtenant works and etc based on accident examples and investigation on actual condition in roads construction work. In addition, the safety management system was developed to perform risk assessment of construction and use it for effective safety training for labor.

Dynamic risk assessment of water inrush in tunnelling and software development

  • Li, L.P.;Lei, T.;Li, S.C.;Xu, Z.H.;Xue, Y.G.;Shi, S.S.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.57-81
    • /
    • 2015
  • Water inrush and mud outburst always restricts the tunnel constructions in mountain area, which becomes a major geological barrier against the development of underground engineering. In view of the complex disaster-causing mechanism and difficult quantitative predictions of water inrush and mud outburst, several theoretical methods are adopted to realize dynamic assessment of water inrush in the progressive process of tunnel construction. Concerning both the geological condition and construction situation, eleven risk factors are quantitatively described and an assessment system is developed to evaluate the water inrush risk. In the static assessment, the weights of eight risk factors about the geological condition are determined using Analytic Hierarchy Process (AHP). Each factor is scored by experts and the synthesis scores are weighted. The risk level is ultimately determined based on the scoring outcome which is derived from the sum of products of weights and comprehensive scores. In the secondary assessment, the eight risk factors in static assessment and three factors about construction situation are quantitatively analyzed using fuzzy evaluation method. Subordinate levels and weight of factors are prepared and then used to calculate the comprehensive subordinate degree and risk level. In the dynamic assessment, the classical field of the eleven risk factors is normalized by using the extension evaluation method. From the input of the matter-element, weights of risk factors are determined and correlation analysis is carried out to determine the risk level. This system has been applied to the dynamic assessment of water inrush during construction of the Yuanliangshan tunnel of Yuhuai Railway. The assessment results are consistent with the actual excavation, which verifies the rationality and feasibility of the software. The developed system is believed capable to be back-up and applied for risk assessment of water inrush in the underground engineering construction.

A Harmonized Method for Dose-response Risk Assessment Based on the Hazard & Risk Evaluation of Chemicals (HREC) According to the Industrial Safety and Health Act (ISHA) (산업안전보건법 상 유해성.위험성 평가제도 적용을 위한 양-반응 평가의 통일화 방안 연구)

  • Lim, Cheol-Hong;Yang, Jeong-Sun;Park, Sang-Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • Objectives: This study developed a harmonized method for risk assessment based on the Hazard & Risk Evaluation of Chemicals (HREC) according to the Industrial Safety and Health Act (ISHA). Methods: Three preliminary studies, performed during 2010 and 2011 by the Occupational Safety and Health Research Institute and three academic research groups, were compared. The differences in risk assessment, especially in the dose-response assessment method, were analyzed. A new harmonized method for dose-response assessment was suggested and its applicability for the HREC was examined. Results: Considering the various steps of each dose-response assessment, the equivalent steps in quantitative correction, uncertainty factor 2 (UF2) for intra-species uncertainty, and UF3 for the experimental period in the uncertainty correction were relatively high. Using our new method, the total correction values (quantitative correction plus uncertainty correction) ranged from 72~15,789 to 30~60, and the ratio of the threshold limit value (TLV) to the reference concentration decreased from 12.8~1900 to 5.4~11.8. Furthermore, when we performed risk characterization by our new method, hazard quotient (HQ) values for chloroethylene, epichlorohydrin, and barium sulfate became 3.0, 14.1, and 1.13 respectively, whereas three previous studies reported HQ values of 7.1, 4580, and 87.3 considering reasonable maximum exposure (RME) conditions. HQs of the three chemicals were calculated to be 0.6, 2.4, and 0.1 respectively, when compared to their TLVs. Conclusions: Our new method could be applicable for the HREC because the total correction values and the ratio of TLVs were within reasonable ranges. It is also recommended that additional risk management measures be applied for epichlorohydrin, for which the HQ values were greater than 1 when compared with both reference values and the TLV. Our proposed method could be used to harmonize dose-response assessment methods for the implementation of risk assessment based on the HREC according to ISHA.

A Study on Incidence of Risk Factor for Assessing Maritime Traffic Risk

  • Kim, Inchul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • In order to assess risk as a basic step for securing safety, it requires to select risk factors and determine the frequency and the severity of the consequence of each risk factor. This research adopted common risk factors among well-known maritime risk assessment models, and proposed objective criteria to gauge the risk level of each risk factor. The starting points of risk evolution were chosen for criteria according to related studies and seafarers' experience. The rate of risk appearance over the criteria is named as the incidence of risk factor. Therefore, the total risk level is expressed as the combination of incidence of each risk factor and severity. This quantitative method would be applied to measuring and comparing the risk level of target maritime zones, and it would also be useful to survey which risk factor be focused for reducing the total risk of a certain maritime zone.

Applicability of FDS for the Fire Hazard Analysis of the Fire Zone at Nuclear Power Plants (원전 화재방호구역의 화재위험 분석을 위한 FDS 적용성)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.13-18
    • /
    • 2006
  • The fire protection regulation for the nuclear power plants is based on the qualitative fire hazard assessment and the quantitative fire risk analysis, and the fire risk is managed by the fire protection plan with the appropriate balance among the fire prevention, fire suppression and the minimization of the fire effect. In these days, the zone model or the field model is generally used for the detail evaluation for the fire risk. At this paper, with consideration of the present trend, we evaluate whether the quantitative fire risk analysis and the assessment of fire result for fire areas at nuclear power plants can be possible by use of Fire Dynamics Simulator (FDS) that is the state-of-the-art fire modeling tool. Consequently, it is expected that the quantitative fire risk evaluation propelled by the fire modeling can be available as an applicable tool to improve the core damage frequency as well as the quantitative fire risk analysis.

A Strategy for the Generation of Accident Scenarios Using Multi-Component Analysis in Quantitative Risk Assessment (화학공정 위험영향 평가기술에서의 다중요소분석기법을 이용한 사고시나리오 산정에 관한 전략)

  • 김구회;이동언;김용하;안성준;윤인섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.24-33
    • /
    • 2001
  • This article proposes a strategy for producing accident scenarios in quantitative risk, which is peformed in process design or operation steps. Present worldwide chemical processes need off-site risk assessment as well as on-site one. Most governments in the world require industrial companies to submit the proper emergency plans through off-site risk assessment. Korea is also preparing for executing Integrated Risk Management System along with PSM and SMS. However.

  • PDF

Development of RBI Procedures and Implementation of a Software Based on API Code (III) - Quantitative Approach (API 기준에 근거한 RBI 절차 개발 및 소프트웨어의 구현 (III) - 정량적 접근법 -)

  • 송정수;심상훈;최송천;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • During the last decade, effort has been made f3r reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. Hence, it was required to develop advanced methods which meet this need. RBI(Risk Based Inspection) methodology is one of the most promising technology satisfying the requirements in the field of integrity management. In this study, a quantitative assessment algorithm fir RBI based on the API 581 code was reconstructed for developing an RBI software. The user-friendly realRBI software is developed with a module for evaluating quantitative risk md financial risk using the potential consequence and the likelihood. Also, inspection planning module for inspection time and inspection method are included in it.

Development of A Quantitative Risk Assessment Model by BIM-based Risk Factor Extraction - Focusing on Falling Accidents - (BIM 기반 위험요소 도출을 통한 정량적 위험성 평가 모델 개발 - 떨어짐 사고를 중심으로 -)

  • Go, Huijea;Hyun, Jihun;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • As the incidence and mortality of serious disasters in the construction industry are the highest, various efforts are being made in Korea to reduce them. Among them, risk assessment is used as data for disaster reduction measures and evaluation of risk factors at the construction stage. However, the existing risk assessment involves the subjectivity of the performer and is vulnerable to the domestic construction site. This study established a DB classification system for risk assessment with the aim of early identification and pre-removal of risks by quantitatively deriving risk factors using BIM in the risk assessment field and presents a methodology for risk assessment using BIM. Through this, prior removal of risks increases the safety of construction workers and reduces additional costs in the field of safety management. In addition, since it can be applied to new construction methods, it improves the understanding of project participants and becomes a tool for communication. This study proposes a framework for deriving quantitative risks based on BIM, and will be used as a base technology in the field of risk assessment using BIM in the future.

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

Risk Reduction Rate for Each Risk Mitigation Measure on High Pressure Urban Gas Pipelines Proposed by Quantitative Risk Analysis (정량적 위험성 평가를 통해 제안된 도시가스 고압배관의 위험경감조치별 위험감소효과)

  • Ryou, Young-Don;Jo, Young-Do;Park, Young-Gil;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.18-23
    • /
    • 2010
  • After conducting QRA(quantitative risk assessment) for the high pressure urban gas pipelines planned to be installed, RMMs(risk mitigation measures) when the societal risk is outside the acceptable region have been derived in this paper. Also risk reduction rates are calculated for each RMM. As a result of QRA, we find out that damaged distance caused by radiational heat is largely dependent upon the wind velocity and the atmospheric stability. The measure that has the highest risk reduction effect is No. 10 which includes pipeline corrosion monitoring, MOV(motor operated valve) installation and the method to protect pipeline damage caused by third-party mechanical interference, and which shows 75 % of risk reduction effect.