• Title/Summary/Keyword: quantitative risk assessment

Search Result 512, Processing Time 0.027 seconds

Analysis of Risk Control Options for Blockage Treatment (Subsea X-mas Tree에서의 Blockage 처리 실패에 대한 위험도 저감 방안 분석)

  • Yoo, Won-Woo;Park, Min-Sun;Yang, Young-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.47-52
    • /
    • 2013
  • A subsea chemical injection system treats blockage problems in a subsea production system. It is important to treat problems quickly, because production delays cause fatal profit losses in a subsea production system. Therefore, the subsea industry requires a relatively higher reliability level for a production system compared to other industries. In this study, a subsea chemical injection system (linked to a control system) to inject chemicals into a subsea X-mas tree was analyzed. By using FSA (Formal Safety Assessment), the risk factors were defined and a quantitative risk analysis utilizing FTA (Fault Tree Analysis) and ETA (Event Tree Analysis) was performed. As a result, the effectiveness of a risk reduction option was evaluated.

The Architectural Analysis of the Buddy System for Qualitative Risk Analysis (정성적 위험 분석을 위한 버디 시스템의 구조 분석)

  • Jeongwon Yoon;Kim, Hong-Keun
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.51-58
    • /
    • 1995
  • The importance of the risk analysis tool has been recognized and its use also has been emphasized by a number of researchers recently The methodology were examined but neither algorithms nor practical applications have been implemented or practiced in Korea. In this paper, the architecture of the Buddy System, one of the automated risk assessment tools. is analyzed in depth to provide the algorithmic understanding and to promote the development of the risk analysis methodology. The Buddy System mainly uses three main factors of vulnerability, threat and countermeasures as a nucleus of the qualatative analysis with the modified loss expectancy value. These factors are identified and assessed by the separation of duties between the end user and security analyst. The Buddy System uses five axioms as its bases of assessment algorithm and the assessed vulnerability level is strictly within these axioms. Since the In-place countermeasures reduce the vulnerability level up to a certain level. the security analyst may use "what if " model to examine the impact of additional countermeasures by proposing each to reduce the vulnerability level further to within the acceptable range. The emphasis on the qualitative approach on vulnerability leveling is very well balanced with the quantitative analysis that the system performance is prominent.prominent.

  • PDF

Cost-Benefit Analysis in order to Select the Reasonably Practical Risk Reduction Measures(RRMs) on High Pressure Urban Gas Pipelines (도시가스 고압배관의 합리적인 위험감소조치 선정을 위한 비용-편익분석)

  • Ryou, Young-Don;Kim, Young-Seob;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • The purpose of CBA(cost-benefit analysis) in risk assessment is to show whether the benefits of implementing additional risk reduction methods(RRMs) derived through risk assessment outweigh its costs and it is proper to implement the methods. In this paper CBA has been conducted in order to select the most effective and reasonable RRM as implementing the RRM derived after QRA for the high pressure urban gas pipelines. As conducting QRA again by applying the derived RRMs, No. 10 measure which includes pipeline corrosion monitoring, MOV(motor operated valve) installation and the method to protect pipeline damage caused by third-party mechanical interference has showed the highest risk reduction effect. Also it has been considered to be reasonably practicable by conducting CBA and then is selected as the most effective and reasonable RRM on the objects of this paper.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

Re-chlorination facility design to cope with virus intrusion in water distribution system (상수도 관망 내 바이러스 유입 대응을 위한 재염소 시설 설계)

  • Kim, Beomjin;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.277-287
    • /
    • 2024
  • Water distribution system (WDS) is exposed to various water quality incidents during its operation. This study utilized Quantitative Microbial Risk Assessment (QMRA) to analyze the risk associated with potential virus intrusion in WDSs. Additionally, the study determined the location and operation of rechlorination facilities to minimize potential risk. In addition, water quality resilience was calculated to confirm that the chlorine concentration maintains within the target range (0.1-1.0 mg/L) during normal operation. Hydraulic analysis was performed using EPANET, while EPANET-MSX was linked to simulate the reactions between viruses and chlorine. The proposed methodology was applied to the Bellingham network in the United States, where rechlorination facilities capable of injecting chlorine concentrations ranging from 0.5 mg/L to 1.0 mg/L were considered. Results indicated that without rechlorination facilities, the Average risk was 0.0154. However, installing rechlorination facilities and injecting chlorine at a concentration of 1.0 mg/L could reduce the Average risk to 39.1%. It was observed that excessive chlorine injection through rechlorination facilities reduced water quality resilience. Consequently, a rechlorination facility with a concentration of 0.5 mg/L was selected, resulting in a reduction of approximately 20% in average risk. This study provides insights for designing rechlorination facilities to enhance preparedness against potential virus ingress in the future.

Safety Evaluation of a Wastewater Reuse for the Farmland Irrigation in Jeju Island (제주지역 하수처리수의 농업용수 재이용 안전성 평가)

  • Son, Yeong Kwon;Rhee, Han-Pil;Kim, Haedo;Choi, Sun Wha;Kim, Jeong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • Safety of reclaimed wastewater irrigation needs to be evaluated to promote public health. Quantitative microbial and toxic risk assessment was conducted to identify the level of risk for farmland workers who use reclaimed wastewater and groundwater in Jeju island. Microbial risk through inhalation and ingestion exposure was below acceptable level (less than $10^{-3}$) of $7.07{\times}10^{-6}$ for reclaimed wastewater and $9.99{\times}10^{-8}$ for groundwater irrigation worker. Aggregate exposure risk of Ni, As and Cu was most contributable to overall risk in both reclaimed wastewater and groundwater irrigation plot. High cumulative exposure risk was estimated through non-dietary soil ingestion and dermal contact of soil, due to the high concentration of As, Cu and Ni in farmland soil. Overall toxic risk was $2.68{\times}10^{-4}$ for reclaimed water and $2.39{\times}10^{-4}$ for groundwater irrigation, which could not meet acceptable toxic risk level of $10^{-6}$. Further efforts, such as provide personal protective equipments or public health education, need to be implicated to reduce adverse health risk.

Quantitative Microbial Risk Assessment for Campylobacter jejuni in Ground Meat Products in Korea

  • Lee, Jeeyeon;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Yoon, Ki-Sun;Seo, Kunho;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.565-575
    • /
    • 2019
  • This study evaluated Campylobacter jejuni risk in ground meat products. The C. jejuni prevalence in ground meat products was investigated. To develop the predictive model, survival data of C. jejuni were collected at $4^{\circ}C-30^{\circ}C$ during storage, and the data were fitted using the Weibull model. In addition, the storage temperature and time of ground meat products were investigated during distribution. The consumption amount and frequency of ground meat products were investigated by interviewing 1,500 adults. The prevalence, temperature, time, and consumption data were analyzed by @RISK to generate probabilistic distributions. In 224 samples of ground meat products, there were no C. jejuni-contaminated samples. A scenario with a series of probabilistic distributions, a predictive model and a dose-response model was prepared to calculate the probability of illness, and it showed that the probability of foodborne illness caused by C. jejuni per person per day from ground meat products was $5.68{\times}10^{-10}$, which can be considered low risk.

An Exploratory Research on Quantitative Risk Assessment Methodology Throughout Success Factor Analysis in Project Financing (PF 개발사업의 성공요인 분석을 통한 리스크 평가체계 구축을 위한 기초연구)

  • Lee, Dong-Gun;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.92-102
    • /
    • 2013
  • A Project Financing (PF) is a form of project delivery system that is carried out for the purpose of trying to give help to the development of national economy and the construction industry in order attract private investment. However, in the case of Korea, many PF projects are only taking into account the aspect of maximizing development benefits, and the proliferation of PF results in project failure. In addition, the interruption of business has been one after another in the aftermath of the recent financial crisis. These major cause is the result of efforts to block the potential risk of objectively quantifying operations. Nowadays, PF risk analysis in terms of various factors is insufficient. The purpose of this study is to identify and quantify the extensive risk elements to classify the cause of affecting the success of the project PF study prior to propose a methodology for evaluating the integrity of the project PF based on this and to provide a quantitative system that can evaluate the business risk. This study identified the factors that affect the PF business success and failure and establish the metrics that can be quantified through existing research and expert interviews. Factors influencing the success of the PF obtained as a result of surveys and interviews in assessing the soundness of the PF development conditions in the future be able to take advantage of, as well as an objective assessment tool to be able to take advantage of the development is expected.

Risk Assessment of Explosion of Mixed Dust Generated in Semiconductor Manufacturing (반도체 공정에서 발생하는 혼합분진의 폭발 위험성평가)

  • Park, Chang-Sup;Kim, Chan-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.474-478
    • /
    • 2018
  • The use of metals such as aluminum and titanium and the related industrial facilities have been continuously increasing to meet the requirements of the improvement of high-tech products due to the development of industry, and explosion of metal dust. Semiconductor process Metal dust is essential, but research is insufficient. The purpose of this study is to identify risk by analyzing the quantitative risk such as maximum explosion pressure and minimum explosion concentration applied international test standard in order to select the semiconductor process facilities handling dust and to predict possible risk of accidents.

Quantitative Assessment of the Diagnostic Role of CDH13 Promoter Methylation in Lung Cancer

  • Zhong, Yun-Hua;Peng, Hao;Cheng, Hong-Zhong;Wang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1139-1143
    • /
    • 2015
  • In order to explore the association between cadherin 13 (CDH13) gene promoter methylation and lung carcinoma (LC) risk, we carried out a meta-analysis with searching of PubMed, Web of Science. Ultimately, 17 articles were identified and analysised by STATA 12.0 software. Overall, we found a significant relationship between CDH13 promoter methylation and LC risk (odds ratio=6.98, 95% confidence interval: 4.21-11.56, p<0.001). Subgroup analyses further revealed that LC risk was increased for individuals carrying the methylated CDH13 compared with those with unmethylated CDH13. Hence, our study identified a strong association between CDH13 gene promoter methylation and LC and highlighted a promising potential for CDH13 methylation in LC risk prediction.