• Title/Summary/Keyword: quantitative risk assessment(QRA)

Search Result 47, Processing Time 0.022 seconds

Development of Risk Assessment by Ergonomics for Conscious Reform : Focused on the Semiconductor Industry (의식개혁을 위해 인간공학에 의한 위험성 평가 기법 개발 : 반도체 산업을 중심으로)

  • Kang, Young-Sig;Park, Peom;Yoon, Yong-Gu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.101-106
    • /
    • 2009
  • The unsafe act and unsafe condition is due to human error that experience 80% of safety accidents. Accordingly, one of the most important issues to reduce industrial accidents as a whole, is how to reduce the accident rate by the human error. Therefore, this paper describes the development of quantitative risk assessment (QRA) model by ergonomics for reform of safety consciousness on the semiconductor industry. Unconsciousness, disregard, ignorance, recklessness, and stress among the human factors are selected for conscious reform. Finally, the QRA model is efficiently expected to contribute towards improving continuous self-safety and health and safety culture campaign in order to prevent industrial accidents.

Estimation of Leak Frequency Function by Application of Non-linear Regression Analysis to Generic Data (비선형 회귀분석을 이용한 Generic 데이터 기반의 누출빈도함수 추정)

  • Yoon, Ik Keun;Dan, Seung Kyu;Jung, Ho Jin;Hong, Seong Kyeong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.15-21
    • /
    • 2020
  • Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis.

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

A Study on Safety Analysis of Stationary LPG - Mobile Hydrogen Complex Refueling Station (LPG 복합 이동식 수소충전소 안전성 분석에 관한 연구)

  • Kim, Piljong;Kang, Seungkyu;Yoo, Myoungjong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.48-60
    • /
    • 2019
  • After the Paris Agreement in 2015, the government has been promoting various policies such as 'Hydrogen-Economy Roadmap(2019)' to supply hydrogen. As part of this, the government announced the goal of building 310 hydrogen refueling stations(HRS) until 2022. To this end, special case standard for the introduction of complex, packaged, and mobile hydrogen refueling stations(MHRS) have been enacted and promulgated. The MHRS has the advantage of being able to supply hydrogen to multiple regions. However, due to the movement and close distance between facilities, it is necessary to secure proper installation standards and operational safety through safety analysis. In this study, the possibility of introduction was investigated by designing a standard model and quantitative risk assessment(QRA). As a result of QRA, personal and social risk were acceptable, and the empirical test direction and implications were derived.

A Study on Quantitative Risk Assessment Method and Risk Reduction Measures for Rail Hazardous Material Transportation (철도위험물수송에 관한 위험도 정량화방안 및 경감대책 연구)

  • Lee, Sang Gon;Cho, Woncheol;Lee, Tae Sik
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • The object of this study is to develop a tool for quantifying risks related to the rail transportation of hazardous commodities and to present mitigation measures. In this study, the Quantitative Risk Assessment (QRA) is used as a risk analysis tool. Based on the previous explosion history (Iri explosion) and consideration of its high risk, Iksan-si is selected as a model city. The result, expressed as average individual risk for exposed people with various distance, indicates that the model city is considered to be safe according to the nuclear energy standard. Also, the mitigation measures are provided since Societal risk of Iksan-si is set within ALARP. Risk reduction measures include rail car design, rail transportation operation, demage spread control as well as derail prevention and alternative routes for reducing accident frequencies. Finally, it is expected to achieve high level of public safety by appling the risk reduction measures.

  • PDF

A Reliability Model of Process Systems with Multiple Dependent Failure States (다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델)

  • Choi, Soo Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.

A Study on the Processing Method of Reliability Database using 2-Bayes Theory (2-Bayes 이론을 이용한 데이터 처리방법에 관한 연구)

  • Lee, M.S.;Rhie, K.W.;Kim, T.H.;Yoon, I.K.;Oh, Y.D.;Seo, D.H.
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.144-149
    • /
    • 2009
  • The safety assessment for facility industry is now being periodically performed in Korea. For the purpose of scientific safety management, QRA(Quantitative Risk Assessment) is also being performed, and reliability data of the facilities is essential to perform the assessment. The necessary reliability data for QRA have been generally announced the values in other process industries, which results in the drop of risk reliability. The most appropriate method is to perform a direct reliability analysis towards the facilities undergoing safety assessment. In this study, the distinction between homogeneous sample estimation and multi-sample estimation of reliability data clarify using 2-Bayes theory.

A Research on the Verification Test Procedure for Quantitative Explosion Risk Assessment and Management of Offshore Installations (해양플랜트 폭발사고 위험도 평가/관리를 위한 실증시험기법에 관한 연구)

  • Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • The structural design of offshore installations against explosions has been required to protect vital areas (e.g. control room, worker's area etc.) and minimize the damage from explosion accidents. Because the explosion accident will not only result in significant casualties and economic losses, but also cause serious pollution and damage to surrounding environment and coastal marine ecosystems. Over the past two decades, an incredible efforts was made to develop reliable methods to reduce and manage the explosion risk. Among the methods Quantitative Risk Assessment and Management (QRA&M) is the one of cutting-edge technologies. The explosion risk can be quantitatively assessed by the product of explosion frequency based on probability calculation and consequence analyzed using computer simulations, namely Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). However to obtain reliable consequence analysis results by CFD and FEA, uncertainties associate with modeling and simulation are needed to be identified and validated by comparison with experimental data. Therefore, large-scaled explosion test procedure is developed in this study. And developed test procedure can be helpful to obtain precious test data for the validation of consequence analysis using computer simulations, and subsequently allow better assessment and management of explosion risks.

Risk Reduction Rate for Each Risk Mitigation Measure on High Pressure Urban Gas Pipelines Proposed by Quantitative Risk Analysis (정량적 위험성 평가를 통해 제안된 도시가스 고압배관의 위험경감조치별 위험감소효과)

  • Ryou, Young-Don;Jo, Young-Do;Park, Young-Gil;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.18-23
    • /
    • 2010
  • After conducting QRA(quantitative risk assessment) for the high pressure urban gas pipelines planned to be installed, RMMs(risk mitigation measures) when the societal risk is outside the acceptable region have been derived in this paper. Also risk reduction rates are calculated for each RMM. As a result of QRA, we find out that damaged distance caused by radiational heat is largely dependent upon the wind velocity and the atmospheric stability. The measure that has the highest risk reduction effect is No. 10 which includes pipeline corrosion monitoring, MOV(motor operated valve) installation and the method to protect pipeline damage caused by third-party mechanical interference, and which shows 75 % of risk reduction effect.