• Title/Summary/Keyword: quantitative real-time PCR (qPCR)

Search Result 244, Processing Time 0.026 seconds

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

Development of Quantitative Real-Time PCR Primers for Detection of Streptococcus sobrinus

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.149-154
    • /
    • 2016
  • The purpose of this study was to develop Streptococcus sobrinus-specific qPCR primers based on the nucleotide sequence of the RNA polymerase ${\beta}-subunit$ gene (rpoB). The specificity of the primers was determined by conventional polymerase chain reaction (PCR) with 12 strains of S. sobrinus and 50 strains (50 species) of non-S. sobrinus bacteria. The sensitivity of the primers was determined by quantitative real-time PCR (qPCR) with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of S. sobrinus ATCC $33478^T$. The specificity data showed that the S. sobrinus-specific qPCR primers (RTSsob-F4/RTSsob-R4) detected only the genomic DNAs of S. sobrinus strains with a detection limit of up to 4 fg of S. sobrinus genomic DNA. Our results suggest that the RTSsob-F4/RTSsob-R4 primers are useful in detecting S. sobrinus with high sensitivity and specificity for epidemiological studies of dental caries..

Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction primers

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.96-100
    • /
    • 2019
  • The purpose of this study was to develop Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the 16S ribosomal RNA (16S rDNA) gene. The specificity of the primers was determined by conventional PCR using 29 strains of 27 oral bacterial species including P. mikwangii. The sensitivity of the primers was determined by qPCR using the purified genomic DNA of P. mikwangii KCOM $1628^T$ (40 ng to 4 fg). The data showed that the qPCR primers (RTB134-F4/RTB134-R4) could detect P. mikwangii strains exclusively and as little as 40 fg of the genomic DNA of P. mikwangii KCOM $1628^T$. These results suggest that the developed qPCR primer pair can be useful for detecting P. mikwangii in epidemiological studies of oral bacterial infectious diseases.

Evaluation of Various Real-Time Reverse Transcription Quantitative PCR Assays for Norovirus Detection

  • Yoo, Ju Eun;Lee, Cheonghoon;Park, SungJun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.816-824
    • /
    • 2017
  • Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for the sensitive and accurate detection of these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays, and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assays A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, and sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A ZEN internal quencher, which decreases nonspecific fluorescence during the PCR, was added to Assay D's probe, which further improved the assay performance. This study compared several detection assays for noroviruses, and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

Development of Quantitative Real-Time PCR Primers for Detection of Prevotella intermedia

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • Prevotella intermedia-specific quantitative real-time PCR (qPCR) primers were previously designed based on the nucleotide sequences of RNA polymerase ${\beta}$-subunit gene (rpoB). However, the several clinical strains isolated from Korean populations are not detectable by the qPCR primers. The purpose of this study was to develop new P. intermedia-specific qPCR primers based on the rpoB. The specificity of the primers was determined by conventional PCR with 12 strains of P. intermedia and 52 strains (52 species) of non-P. intermedia bacteria. The sensitivity of primers was determined by qPCR with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of P. intermedia ATCC $25611^T$. The data indicated that only P. intermedia strains were detected by the P intermedia-specific qPCR primers (RTPiF2/RTPiR2); in addition, as little as 40 fg of P. intermedia genomic DNA could be detected. These results suggest that these qPCR primers are useful in detecting P. intermedia from the bacterial infectious lesions including dental plaque and oral tissue lesions.

Detection of a Microsporidium, Nosema ceranae, from Field Population of the Bumblebee, Bombus terrestris, via Quantitative Real-Time PCR (서양뒤영벌 야외개체군에서 Real-Time PCR을 이용한 Nosema ceranae의 검출)

  • Lee, Dae-Weon
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2013
  • The bumblebee, Bombus terrestris, has played an important role as one of the alternative pollinators since the outbreak of honeybee collapse disorder. Recently, pathogens and parasites such as viruses, bacteria and mites, which affect the life span and fecundity of their host, have been discovered in B. terristris. In order to detect the microsporidian pathogen, Nosema spp. in the field populations of B. terristris, we collected adults and isolated their genomic DNA for diagnostic PCR. The PCR primers specific for Nosema spp. were newly designed and applied to gene amplification for cloning. Only small subunit ribosomal RNA (SSU rRNA) gene of N. ceranae was successfully amplified among examined genes and sequenced, which indicates that N. ceranae mainly infects the examined field population of B. terristris. To detect of SSU rRNA gene, two regions of SSU rRNA gene were selected by primary PCR analysis and further analyzed in quantitative real-time PCR (qRT-PCR). The qRT-PCR analysis demonstrated that SSU rRNA of N. ceranae was detected at concentration as low as $0.85ng/{\mu}l$ genomic DNA. This result suggests that the detection via qRT-PCR can be applied for the rapid and sensitive diagnosis of N. ceranae infection in the field population as well as risk assessment of B. terristris.

Performance of Quantitative Real-Time PCR for Detection of Tuberculosis in Granulomatous Lymphadenitis Using Formalin-Fixed Paraffin-Embedded Tissue

  • Munkhdelger, Jijgee;Mia-Jan, Khalilullah;Lee, Dongsup;Park, Sangjung;Kim, Sunghyun;Choi, Yeonim;Wang, Hye-Young;Jeon, Bo-Young;Lee, Hyeyoung;Park, Kwang Hwa
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2013
  • Although culture is the gold standard method to identify mycobacteria, its use in tuberculous lymphadenitis (TBL) is limited due to formalin fixation of the submitted specimens. We evaluated the performance of quantitative real-time PCR (q-PCR) for Mycobacterium Tuberculosis (MTB) in granulomatous lymphadenitis using formalin-fixed paraffin-embedded (FFPE) tissues. From 2000 to 2010, a total number of 117 cases of lymph node samples with granulomatous inflammation which were surgically removed and fixed in formalin were studied. Hematoxylin & Eosin (H&E) and Ziehl-Neelsen-stained (ZN) slides were reviewed. qPCR using Real TB-Taq$^{(R)}$ was performed for all cases to identify Mycobacterium tuberculosis. Thirteen non-tuberculous lymphadenopathy cases were used as negative control. Cervical lymph nodes were more frequently affected (60%, 70/117) than other sites. ZN stain for acid fast bacilli was positive in 19 (16.24%) cases. qPCR for tuberculosis was positive in 92 (78.63%) cases. Caseous necrosis was found in 103 (88.03%) cases. While the ZN stain and qPCR were both negative in all control cases, the qPCR showed a significantly higher positive rate (78.63% vs. 16.24%) compared to ZN stain in histologically diagnosed TBL. Quantitative real-time PCR proves to be more sensitive than ZN stain for diagnosis of tuberculous lymphadenitis.

Early Detection of Cochlodinium polykrikoides (Dinophyceae) Blooms in Namhaedo in 2019 Using Quantitative Real-Time PCR (qPCR) (Quantitative real-time PCR (qPCR)을 이용하여 2019년 남해도 해역에서 발생한 Cochlodinium polykrikoides (Dinophyceae) 적조의 조기검출)

  • Park, Tae Gyu;Kim, Jin Joo;Song, Seon Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.674-680
    • /
    • 2020
  • Quantitative real-time polymerase chain reaction (qPCR) was applied for the early detection of red tides in the coastal areas of South Gyeongsang in 2019. Cochlodinium polykrikoides (Dinophyceae) was detected at very low cell densities (0.0015~0.0058 cells mL-1) in early June, but its cell density increased by up to 0.163 cells mL-1 in mid-August. Higher cell densities were detected mainly in Namhaedo using both qPCR and microscopy (maximum 24 cells mL-1) in late-August. Accordingly, a red tide alert was issued on September 2 (maximum 200 cells mL-1) on this island. C. polykrikoides cell density in Namhaedo peaked on September 11 (12,000 cells mL-1). Our results indicate that C. polykrikoides was detected at very low cell density in Namhaedo prior to bloom, which occurred in the same area. Therefore, qPCR is a useful tool to detect even at very low cell densities of C. polykrikoides for early warning of blooms.