• Title/Summary/Keyword: quantile

Search Result 479, Processing Time 0.024 seconds

Groundwater level behavior analysis using kernel density estimation (비모수 핵밀도 함수를 이용한 지하수위 거동분석)

  • Jeong, Ji Hye;Kim, Jong Wook;Lee, Jeong Ju;Chun, Gun Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.381-381
    • /
    • 2017
  • 수자원 분야에 대한 기후변화의 영향은 홍수, 가뭄 등 극치 수문사상의 증가와 변동성 확대를 초래하는 것으로 알려져 있으며, 이에 따라 예년에 비해 발생빈도 및 심도가 증가한 가뭄에 대한 모니터링 및 피해경감을 위해 정부에서는 국민안전처를 비롯한 관계기관 합동으로 생활 공업 농업용수 등 분야별 가뭄정보를 제공하고 있다. 국토교통부와 환경부는 생활 및 공업용수 분야의 가뭄정보 제공을 위해 광역 지방 상수도를 이용하는 급수 지역과 마을상수도, 소규모급수시설 등 미급수지역의 용수수급 정보를 분석하여 가뭄 분석정보를 제공 중에 있다. 하지만, 미급수지역에 대한 가뭄 예?경보는 기준이 되는 수원정보의 부재로 기상 가뭄지수인 SPI6를 이용하여 정보를 생산하고 있다. 기상학적 가뭄 상황과 물부족에 의한 체감 가뭄은 차이가 있으며, 미급수 지역의 경우 지하수를 주 수원으로 사용하는 지역이 대부분으로 기상학적 가뭄지수인 SPI6를 이용한 가뭄정보로 실제 물수급 상황을 반영하기는 부족한 실정이다. 따라서 본 연구에서는 미급수지역의 주요 수원인 지하수의 수위 상황을 반영한 가뭄모니터링 기법을 개발하고자 하였으며, 가용량 분석이 현실적으로 어려운 지하수의 특성을 고려하여 수위 거동의 통계적 분석을 통해 가뭄을 모니터링 할 수 있는 방법으로 접근하였다. 국가지하수관측소 중 관측기간이 10년 이상이고 강우와의 상관성이 높은 관측소들을 선정한 후, 일수위 관측자료를 월별로 분리하여 1월~12월 각 월에 대해 핵밀도 함수 추정기법(kernel densitiy estimation)을 적용하여 월별 지하수위 분포 특성을 도출하였다. 각 관측소별 관측수위 분포에 대해 백분위수(percentile)를 이용하여, 25%~100% 사이는 정상, 10%~25% 사이는 주의단계, 5%~10% 사이는 심한가뭄, 5% 이하는 매우심함으로 가뭄의 단계를 구분하였다. 각 백분위수에 해당하는 수위 값은 추정된 Kernel Density와 Quantile Function을 이용하여 산정하였고, 최근 10일 평균수위를 현재의 수위로 설정하여 가뭄의 정도를 분류하였다. 분석된 결과는 관측소를 기점으로 역거리가중법(inverse distance weighting)을 통해 공간 분포를 시켰으며, 수문학적, 지질학적 동질성을 반영하기 위하여 유역도 및 수문지질도를 중첩한 공간연산을 통해 전국 지하수 가뭄상태를 나타내는 지하수위 등급분포도를 작성하였다. 실제 가뭄상황과의 상관성을 분석하기 위해 언론기사를 통해 확인된 가뭄시기와 백문위수 25%이하로 분석된 지하수 가뭄시기를 ROC(receiver operation characteristics) 분석을 통해 비교 검증하였다.

  • PDF

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model (APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가)

  • Choi, Soon-Kun;Cho, Jaepil;Jeong, Jaehak;Kim, Min-Kyeong;Yeob, So-Jin;Jo, Sera;Owusu Danquah, Eric;Bang, Jeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.

Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information (기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성)

  • Lee, Jeonghoon;Lee, Okjeong;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.747-757
    • /
    • 2021
  • Quantification of extreme rainfall is very important in establishing a flood protection plan, and a general measure of extreme rainfall is expressed as an T-year return level. In this study, a method was proposed for quantifying spatial distribution and uncertainty of daily rainfall depths with various return periods using a hierarchical Bayesian model combined with climate and geographical information, and was applied to the Seoul-Incheon-Gyeonggi region. The annual maximum daily rainfall depth of six automated synoptic observing system weather stations of the Korea Meteorological Administration in the study area was fitted to the generalized extreme value distribution. The applicability and reliability of the proposed method were investigated by comparing daily rainfall quantiles for various return levels derived from the at-site frequency analysis and the regional frequency analysis based on the index flood method. The uncertainty of the regional frequency analysis based on the index flood method was found to be the greatest at all stations and all return levels, and it was confirmed that the reliability of the regional frequency analysis based on the hierarchical Bayesian model was the highest. The proposed method can be used to generate the rainfall quantile maps for various return levels in the Seoul-Incheon-Gyeonggi region and other regions with similar spatial sizes.

The Impact of COVID-19 Pandemic on the Relationship Structure between Volatility and Trading Volume in the BTC Market: A CRQ approach (COVID-19 팬데믹이 BTC 변동성과 거래량의 관계구조에 미친 영향 분석: CRQ 접근법)

  • Park, Beum-Jo
    • Economic Analysis
    • /
    • v.27 no.1
    • /
    • pp.67-90
    • /
    • 2021
  • This study found an interesting fact that the nonlinear relationship structure between volatility and trading volume changed before and after the COVID-19 pandemic according to empirical analysis using Bitcoin (BTC) market data that sensitively reflects investors' trading behavior. That is, their relationship appeared positive (+) in a stable market state before COVID-19 pandemic, as in theory based on the information flow paradigm. In a state under severe market stress due to COVID-19 pandemic, however, their dependence structure changed and even negative (-). This can be seen as a consequence of increased market stress caused by COVID-19 pandemics from a behavioral economics perspective, resulting in structural changes in the asset market and a significant impact on the nonlinear dependence of volatility and trading volume (in particular, their dependence at extreme quantiles). Hence, it should be recognized that in addition to information flows, psychological phenomena such as behavioral biases or herd behavior, which are closely related to market stress, can be a key in changing their dependence structure. For empirical analysis, this study performs a test of Ross (2015) for detecting a structural change, and proposes a Copula Regression Quantiles (CRQ) approach that can identify their nonlinear relationship structure and the asymmetric dependence in their distribution tails without the assumption of i.i.d. random variable. In addition, it was confirmed that when the relationship between their extreme values was analyzed by linear models, incorrect results could be derived due to model specification errors.

Evaluation of Extreme Rainfall based on Typhoon using Nonparametric Monte Carlo Simulation and Locally Weighted Polynomial Regression (비매개변수적 모의발생기법과 지역가중다항식을 이용한 태풍의 극치강우량 평가)

  • Oh, Tae-Suk;Moon, Young-Il;Chun, Si-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.193-205
    • /
    • 2009
  • Typhoons occurred in the tropical Pacific region, these might be affected the Korea moving toward north. The strong winds and the heavy rains by the typhoons caused a natural disaster in Korea. In the research, the heavy rainfall events based on typhoons were evaluated quantitative through various statistical techniques. First, probability precipitation and typhoon probability precipitation were compared using frequency analysis. Second, EST probability precipitation was calculated by Empirical Simulation Techniques (EST). Third, NL probability precipitation was estimated by coupled Nonparametric monte carlo simulation and Locally weighted polynomial regression. At the analysis results, the typhoons can be effected Gangneung and Mokpo stations more than other stations. Conversely, the typhoons can be effected Seoul and Inchen stations less than other stations. Also, EST and NL probability precipitation were estimated by the long-term simulation using observed data. Consequently, major hydrologic structures and regions where received the big typhoons impact should be review necessary. Also, EST and NL techniques can be used for climate change by the global warming. Because, these techniques used the relationship between the heavy rainfall events and the typhoons characteristics.

The Effect of Marketing Mix Factors on Sales: Comparison of Superstars and Long Tails in the Film Industry (마케팅믹스 요소가 매출액에 미치는 영향: 영화산업에서 슈퍼스타와 롱테일의 비교)

  • Jung-Won Lee;Choel Park
    • Information Systems Review
    • /
    • v.24 no.2
    • /
    • pp.1-20
    • /
    • 2022
  • Researchers are making contradictory claims through the concept of superstars and long tails about how the development of IT technology affects demand distribution. Unlike previous studies that focused on changes in demand from a macro point of view, this study explored whether the relationship between a company's marketing activities and consumer response differs depending on the product location (i.e., superstar vs. long tail) from a micro point of view. Based on the marketing mix framework, hypotheses were developed based on the relevant literature. In the case of empirical analysis, 2,835 daily data from 63 Korean films were tested using the quantile regression method. As a result of the analysis, it was found that the influence of marketing mix factors on sales varies depending on the location of the product. Specifically, the appeal breadth of the film and the effect of owned media are enhanced in superstar products, and the effect of acquisition media in long-tail products is enhanced and the negative effects of competition are mitigated. Unlike previous studies that focused on macroscopic changes in demand distribution, this study suggested marketing activities suitable for practitioners through microscopic analysis.

Validation and Calibration of Semi-Quantitative Food Frequency Questionnaire - With Participants of the Korean Health and Genome Study - (반정량식품섭취빈도조사지의 타당성 검증 및 보정 - 지역사회 유전체 코호트 참여자를 대상으로 -)

  • Ahn, Youn-Jhin;Lee, Ji-Eun;Cho, Nam-Han;Shin, Chol;Park, Chan;Oh, Berm-Seok;Kimm, Ku-Chan
    • Korean Journal of Community Nutrition
    • /
    • v.9 no.2
    • /
    • pp.173-182
    • /
    • 2004
  • We carried out a validation-calibration study of the food frequency questionnaire (FFQ) that we had previously developed for a community-based cohort of the Korean Genome and Health Study of the Korea National Genome Research Institute. We have collected a total of 254 3-day diet records (DRs) from 400 subjects, 200 each randomly selected from the two study cohorts of Ansung and Ansan. FFQ was administered at the time of cohort recruitment in 2001, and DRs were collected during a two month period from January through February of 2002. The mean age was 52.2 years. Farming for men and housewife for women were the most common occupations. The majority of the subjects had undergone 6∼12 years of education. The general characteristics including demographic and other data were not different from the total cohort subjects. Absolute levels of consumed nutrients including total energy (energy), protein, fat, carbohydrate, calcium, phosphorus, sodium, potassium, iron, retinol, carotene, vitamin A, thiamin, riboflavin, niacin and vitamin C were compared. The average of energy intake was not significantly different between the data collected by the 2 methods. However, consumptions of protein and fat were higher in data of DRs, whereas that of carbohydrate was higher in FFQ data. Significant correlation of each nutrient consumption between the data sets was observed (p < 0.05) except in the case of iron, while the average correlation coefficient between them was 0.22 ranging from 0.33 for energy to 0.11 for iron. The results of cross classification by quantile for exact classification ranged from 25.2% (carotene) to 35.0% (phosphorus), and from 64.6% (vitamin A) to 76.4% (retinol) for adjacent classification. The proportion of completely opposite classification was 8.1% in average. Calibration slope was estimated by regression and calibration parameters ranged from 0.025 for carotene to 0.423 for niacin. We conclude that the FFQ we have developed is an appropriate tool for assessing the nutrient intakes as ranking exposures in epidemiology studies in view that amounts of consumed nutrients obtained by FFQ were similar to those collected by DRs, that correlations between consumed nutrients collected by these methods were significant, and that classification results were relatively fair. The correlation coefficients, however, were lower than expected, which may be mainly due to the survey season. In fact, any short-term dietary survey cannot accurately reflect the overall dietary intakes that change heavily depending on seasons. Further studies including the analysis of chemical indices would be helpful for the studies of causal relationship between the diet and disease.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

SSP Climate Change Scenarios with 1km Resolution Over Korean Peninsula for Agricultural Uses (농업분야 활용을 위한 한반도 1km 격자형 SSP 기후변화 시나리오)

  • Jina Hur;Jae-Pil Cho;Sera Jo;Kyo-Moon Shim;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.1-30
    • /
    • 2024
  • The international community adopts the SSP (Shared Socioeconomic Pathways) scenario as a new greenhouse gas emission pathway. As part of efforts to reflect these international trends and support for climate change adaptation measure in the agricultural sector, the National Institute of Agricultural Sciences (NAS) produced high-resolution (1 km) climate change scenarios for the Korean Peninsula based on SSP scenarios, certified as a "National Climate Change Standard Scenario" in 2022. This paper introduces SSP climate change scenario of the NAS and shows the results of the climate change projections. In order to produce future climate change scenarios, global climate data produced from 18 GCM models participating in CMIP6 were collected for the past (1985-2014) and future (2015-2100) periods, and were statistically downscaled for the Korean Peninsula using the digital climate maps with 1km resolution and the SQM method. In the end of the 21st century (2071-2100), the average annual maximum/minimum temperature of the Korean Peninsula is projected to increase by 2.6~6.1℃/2.5~6.3℃ and annual precipitation by 21.5~38.7% depending on scenarios. The increases in temperature and precipitation under the low-carbon scenario were smaller than those under high-carbon scenario. It is projected that the average wind speed and solar radiation over the analysis region will not change significantly in the end of the 21st century compared to the present. This data is expected to contribute to understanding future uncertainties due to climate change and contributing to rational decision-making for climate change adaptation.