• 제목/요약/키워드: quantile

검색결과 481건 처리시간 0.028초

The Effect of Foreign Ownership and Product Market Competition on Firm Performance: Empirical Evidence from Vietnam

  • HA, Thach Xuan;TRAN, Thu Thi
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권11호
    • /
    • pp.79-86
    • /
    • 2021
  • In recent years, firm performance has been a topic that attracts many researchers. It is extremely important to identify the factors that change firm performance. In the current trend of competition and integration, foreign ownership, product market competition is found to reduce agency costs and impact firm performance. The purpose of this research is to investigate the relationship between foreign ownership, product market competition, and firm performance. Our research using a quantile regression model, through panel data of 290 companies listed on the Vietnam stock exchange (include Ho Chi Minh and Hanoi stock exchanges) from 2017 to 2019 that was collected by Thomson - Reuters DataStream has shown that foreign ownership and product market competition have a positive impact on Tobin's Q but are not statistically significant with ROA. Critically, our quantile regression results suppose foreign ownership, product market competition have a significantly larger positive impact in high-performing firms relative to low-performing firms. The results help propose solutions to planners and managers to change foreign ownership and product market competition to increase business performance. Besides, through quantile regression analysis, managers need to pay attention to the impact on foreign ownership, product market competition; there will be a difference between high-performing firms relative to low-performing firms.

일반화 서포트벡터 분위수회귀에 대한 연구 (Generalized Support Vector Quantile Regression)

  • 이동주;최수진
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.

Application of artificial neural network model in regional frequency analysis: Comparison between quantile regression and parameter regression techniques.

  • Lee, Joohyung;Kim, Hanbeen;Kim, Taereem;Heo, Jun-Haeng
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.170-170
    • /
    • 2020
  • Due to the development of technologies, complex computation of huge data set is possible with a prevalent personal computer. Therefore, machine learning methods have been widely applied in the hydrologic field such as regression-based regional frequency analysis (RFA). The main purpose of this study is to compare two frameworks of RFA based on the artificial neural network (ANN) models: quantile regression technique (QRT-ANN) and parameter regression technique (PRT-ANN). As an output layer of the ANN model, the QRT-ANN predicts quantiles for various return periods whereas the PRT-ANN provides prediction of three parameters for the generalized extreme value distribution. Rainfall gauging sites where record length is more than 20 years were selected and their annual maximum rainfalls and various hydro-meteorological variables were used as an input layer of the ANN model. While employing the ANN model, 70% and 30% of gauging sites were used as training set and testing set, respectively. For each technique, ANN model structure such as number of hidden layers and nodes was determined by a leave-one-out validation with calculating root mean square error (RMSE). To assess the performances of two frameworks, RMSEs of quantile predicted by the QRT-ANN are compared to those of the PRT-ANN.

  • PDF

Healthcare Systems and COVID-19 Mortality in Selected OECD Countries: A Panel Quantile Regression Analysis

  • Jalil Safaei;Andisheh Saliminezhad
    • Journal of Preventive Medicine and Public Health
    • /
    • 제56권6호
    • /
    • pp.515-522
    • /
    • 2023
  • Objectives: The pandemic caused by coronavirus disease 2019 (COVID-19) has exerted an unprecedented impact on the health of populations worldwide. However, the adverse health consequences of the pandemic in terms of infection and mortality rates have varied across countries. In this study, we investigate whether COVID-19 mortality rates across a group of developed nations are associated with characteristics of their healthcare systems, beyond the differential policy responses in those countries. Methods: To achieve the study objective, we distinguished healthcare systems based on the extent of healthcare decommodification. Using available daily data from 2020, 2021, and 2022, we applied quantile regression with non-additive fixed effects to estimate mortality rates across quantiles. Our analysis began prior to vaccine development (in 2020) and continued after the vaccines were introduced (throughout 2021 and part of 2022). Results: The findings indicate that higher testing rates, coupled with more stringent containment and public health measures, had a significant negative impact on the death rate in both pre-vaccination and post-vaccination models. The data from the post-vaccination model demonstrate that higher vaccination rates were associated with significant decreases in fatalities. Additionally, our research indicates that countries with healthcare systems characterized by high and medium levels of decommodification experienced lower mortality rates than those with healthcare systems involving low decommodification. Conclusions: The results of this study indicate that stronger public health infrastructure and more inclusive social protections have mitigated the severity of the pandemic's adverse health impacts, more so than emergency containment measures and social restrictions.

Balancing the nuclear equation: Climate policy uncertainty and budgetary dynamics

  • Chang Li;Sajid Ali;Raima Nazar;Muhammad Saeed Meo
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2850-2858
    • /
    • 2024
  • Amidst the uncertainties of climate policy, investing in nuclear energy technology emerges as a sustainable strategy, fostering innovation in a critical sector, while simultaneously addressing urgent environmental concerns and managing budgetary dynamics. Our investigation inspects the asymmetric influence of climate policy uncertainty on nuclear energy technology in the top 10 nations with the highest nuclear energy R&D budgets (Germany, Japan, China, France, USA, UK, India, South Korea, Russia, and Canada). Previous studies adopted panel data methods to evaluate the linkage between climate policy uncertainty and nuclear energy technology. Nonetheless, these investigations overlooked the variability in this association across various countries. Conversely, this investigation introduces an innovative tool, 'Quantile-on-Quantile' to probe this connection merely for every economy. This methodology concedes for a more accurate evaluation, offering a holistic global perspective and delivering tailored insights for individual countries. The findings uncover that climate policy uncertainty significantly reduces nuclear energy technology budgets across multiple quantiles in most selected economies. Additionally, our results highlight the asymmetries in the correlations between our variables across the nations. These findings stress the need for policymakers to conduct thorough assessments and skillfully manage climate policy uncertainty and nuclear energy budgets.

Copula 모형을 이용한 이변량 강우빈도해석 (Bivariate Frequency Analysis of Rainfall using Copula Model)

  • 주경원;신주영;허준행
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.827-837
    • /
    • 2012
  • 확률강우량은 수공구조물의 설계에 있어 중요한 역할을 하며 이러한 확률강우량의 산정은 일반적으로 일변량 빈도해석을 수행하고 최적의 확률분포형을 찾아냄으로써 계산된다. 하지만 일변량 빈도해석은 수행 시 지속기간이 제한적이라는 단점이 있으며 이를 보완하기 위해 본 연구에서는 이변량 빈도해석을 수행하였다. 다변량 모형인 copula 모형 중3가지의 분포형을 이용하여 5개 지점의 연최대강우사상에 대해 이 변량 빈도해석을 수행하였으며 확률변수로 강우량과 지속기간을 사용하였다. 주변분포형은 강우량에는 Gumbel (GUM), generalized logistic (GLO) 분포형, 지속기간에는 generalized extreme value (GEV), GUM, GLO 분포형이사용됐으며 copula 모형은Frank, Joe, Gumbel-Hougaard 모형을 이용하였다. 주변분포형의 매개변수는 확률가중모멘트법을 이용하여 추정하였으며, copula 모형의 매개변수는 준모수방법인 의사최우도법을 사용하여 구하였다. 이를 통해 얻어진 확률강우량을 주변분포형과 copula 모형을바꾸어가며 비교하였다. 그 결과, 주변분포형의 종류에 따른 변화에서는 지속기간의 분포형에는 크게 영향을 받지 않는 것으로 나타났다. 강우량의 분포형에 따라서는 조금씩 차이가 났으며 강우량의 분포형이 GUM일 경우, GLO일 때에 비해 재현기간이 증가할수록 확률강우량이 증가하는 경향이 두드러졌다. Copula 모형별로 비교해보았을 때, Joe, Gumbel-Hougaard 모형은 비슷한 경향을 나타내었으며 Frank 모형은 재현기간의 증가에 따른 확률강우량의 증가가 강하게 나타냈다.

간호학생의 기본간호학실습 교과목에서 S-PBL의 효과 : 비판적 사고성향을 중심으로 최소자승법과 분위회귀분석의 비교분석 (Effects of S-PBL in Fundamental Nursing Practicum among Nursing Students : Comparision Analysis of a Ordinary Least Square and a Quantile Regression for Critical Thinking Disposition)

  • 전원희;이은주
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.1036-1045
    • /
    • 2013
  • 본 연구는 간호학생의 비판적 사고성향, 자기효능감 및 학습태도에 대한 시뮬레이션 연계 문제중심학습(S-PBL)의 효과를 파악하고 분위회귀분석을 통해 비판적 사고성향의 상이한 분위에 따른 설명변수의 효과 크기를 비교, 분석하였다. 연구대상자는 일개 3년제 간호학과 1학년 학생으로 '기본간호학 실습' 교과목을 수강하는 143명으로, 대상자들은 대조군과 실험군에 무작위 할당되어 대조군 66명, 실험군 77명이었다. 연구결과, 실험군은 중재 후 대조군에 비해 비판적 사고성향과 자기효능감이 유의하게 향상되었다. 비판적 사고성향에 영향을 미치는 요인은 최소자승법으로 분석했을 때 학습법과 자기효능감으로 나타났고 이들 변수의 비판적 사고성향에 대한 설명력은 41.0%로 나타났다. 분위회귀분석에서 학습법은 비판적 사고성향 점수의 0.1분위에서 0.7분위까지의 학생들에게, 자기효능감은 모든 분위에서, 학습태도는 0.4, 0.6 및 0.7분위의 학생들에게 유의한 영향을 미쳤다. 결론적으로 S-PBL은 간호학생들의 비판적 사고성향과 자기효능감을 증진시키데 유용한 학습방법으로 볼 수 있다. 또한 비판적 사고성향을 증진시키기 위해서는 수업에서 S-PBL을 적극적으로 활용하고 학생들의 자기효능감을 증진시켜 나갈 필요가 있다.

신도시 택지개발사업지역에서 토지가격 결정요인에 관한 연구 (A Study on the Determinants of Land Price in a New Town)

  • 정태윤
    • 부동산연구
    • /
    • 제28권1호
    • /
    • pp.79-90
    • /
    • 2018
  • 본 연구는 주택지의 가격결정모형을 추정하여 신도시 주거용 토지의 가격 결정요인 알아보고자 하였다. 이를 위해서 경상남도 김해시 장유신도시 지역에서 택지개발사업으로 조성된 주택지 1,000여 필지의 실거래 가격자료를 대상으로 헤도닉 특성이 주택지 가격에 미치는 영향을 GLS 분석방법과 분위수 회귀분석방법을 이용하여 분석하였다. 본 연구는 주택지 가격과 그 오차가 정규분포를 가질 때 조건부 평균을 추정하는 GLS 추정결과와 비교하기 위해 주택지 가격이 대칭적이지 않고 정규분포를 가지지 아니할 때 조건부 분위수별 추정을 위해 분위수 회귀분석 모형을 사용하였다. 그 결과 가격 분위수별로 해당 특성이 미치는 영향의 차이를 확인할 수 있었다. 경과 연수변수는 음의 영향을 보였지만 일정기간을 경과하면 다시 양의 영향을 보이는 것으로 나타났으며, 그 반전기간은 고가주택지 분위수에서 좀 더 높은 값을 보였다. 신도시 주택지 중에서 점포 겸용택지의 긍정적인 영향이 가장 크게 나타났으며, 주택지의 수요자는 도로에 한면만 접한 토지보다 두면이상 접한 각지의 토지, 부정형토지보다는 사각형의 토지를 선호하는 것으로 나타났다. 각지는 주택지의 일조권 개선에 긍정적이며, 인접대지 경계로부터의 이격거리로 인한 건축면적의 감소가 적기 때문에 이 같은 결과를 보인 것으로 판단된다. 점포겸용택지 변수는 저가 주택용 토지에서 더 큰 영향을 미치는 것으로 나타났다. 이는 저가의 주거용 토지가 대부분 임대형 주택 건부지로 사용되는 경향이 많아 자가 거주용 주택 건부지와 다른 특성을 가지기 때문으로 보인다. 주거용 토지가격은 가격 수준에 따라 다른 특성을 지니며, 담보가지의 평가와 부동산 정책의 입안에 있어서 이를 고려하여야 할 것으로 보인다.