• Title/Summary/Keyword: quality of service (QoS)-based routing

Search Result 89, Processing Time 0.033 seconds

Virtual Source and Flooding-Based QoS Unicast and Multicast Routing in the Next Generation Optical Internet based on IP/DWDM Technology (IP/DWDM 기반 차세대 광 인터넷 망에서 가상 소스와 플러딩에 기초한 QoS 제공 유니캐스트 및 멀티캐스트 라우팅 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Routing technologies considering QoS-based hypermedia services have been seen as a crucial network property in next generation optical Internet (NGOI) networks based on IP/dense-wavelength division multiplexing (DWDM). The huge potential capacity of one single fiber. which is in Tb/s range, can be exploited by applying DWDM technology which transfers multiple data streams (classified and aggregated IP traffics) on multiple wavelengths (classified with QoS-based) simultaneously. So, DWDM-based optical networks have been a favorable approach for the next generation optical backbone networks. Finding a qualified path meeting the multiple constraints is a multi-constraint optimization problem, which has been proven to be NP-complete and cannot be solved by a simple algorithm. The majority of previous works in DWDM networks has viewed heuristic QoS routing algorithms (as an extension of the current Internet routing paradigm) which are very complex and cause the operational and implementation overheads. This aspect will be more pronounced when the network is unstable or when the size of network is large. In this paper, we propose a flooding-based unicast and multicast QoS routing methodologies(YS-QUR and YS-QMR) which incur much lower message overhead yet yields a good connection establishment success rate. The simulation results demonstrate that the YS-QUR and YS-QMR algorithms are superior to the previous routing algorithms.

Multi-Channel/Radio based CAC Mechanism for Wireless Ad-hoc Networks (무선 애드혹 통신망용 멀티 채널/라디오 기반 호접속 제어 메저니즘)

  • Ko, Sung-Won;Kang, Min-Su;Kim, Young-Han
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.396-404
    • /
    • 2007
  • In this paper, an Ad-hoc Routing Protocol which works in wireless Ad-hoc communication networks with multiple radios and multiple channels, and controls call admission based on bandwidth measurement is proposed. Unlike the conventional Ad-hoc node with a single radio using a single channel, an Ad-hoc node of the protocol proposed, MCQosR(Multiple Channel Quality of Service Routing), has multiple radios and uses multiple channels, which makes full duplex transmission between wireless Ad-hoc nodes, and reduces the intra interference on a route. Also, a fixed channel only for reception at each node enables the measurement of the available bandwidth, which is used to control the call admission for QoS provision. The performance of MCQosR is verified by simulation.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

A Routing Algorithm based on Deep Reinforcement Learning in SDN (SDN에서 심층강화학습 기반 라우팅 알고리즘)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1153-1160
    • /
    • 2021
  • This paper proposes a routing algorithm that determines the optimal path using deep reinforcement learning in software-defined networks. The deep reinforcement learning model for learning is based on DQN, the inputs are the current network state, source, and destination nodes, and the output returns a list of routes from source to destination. The routing task is defined as a discrete control problem, and the quality of service parameters for routing consider delay, bandwidth, and loss rate. The routing agent classifies the appropriate service class according to the user's quality of service profile, and converts the service class that can be provided for each link from the current network state collected from the SDN. Based on this converted information, it learns to select a route that satisfies the required service level from the source to the destination. The simulation results indicated that if the proposed algorithm proceeds with a certain episode, the correct path is selected and the learning is successfully performed.

A QoS-based Multicast Protocol in Hierarchical Encoding Environment (계층화된 인코딩 환경에서 서비스 품질 보장을 지원하는 멀티캐스트 프로토콜)

  • Im, Yu-Jin;Choe, Jong-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1112-1125
    • /
    • 1999
  • 최근 들어 멀티미디어를 지원하는 응용들의 서비스 품질 보장과 멀티캐스트 지원에 대한 요구가 증가되고 있으나 기존의 멀티캐스트 프로토콜로는 이러한 요구를 수용할 수 없는 문제가 발생하고 있다. 현재 인터넷에서 사용되고 있는 라우팅 메커니즘은 네트워크 자원 정보나 세션의 QoS 요구사항을 고려하지 않고 단순히 종단간의 연결에만 초점을 맞추고 있기 때문이다. 따라서 본 논문에서는 멀티캐스트 환경에서 서비스 품질보장을 지원하기 위한 새로운 프로토콜, LayeredQoS을 제안한다. 다중의 CP (Central Point)를 채택하고 각각의 CP에 적절한 QoS 레벨을 부여하여 사용함으로써 대역폭의 공유정도를 높일 뿐만 아니라 전체 트리 비용을 감소시켜 궁극적으로 네트워크 처리량이 증가되도록 하였다. 또한 시뮬레이션 방법을 통하여 다른 프로토콜보다 나은 성능을 가지는 것으로 평가하였다.Abstract Many emerging multimedia applications often require a guaranteed quality of service and multicast connection. But the traditional multicast protocol can't meet the needs since the routing mechanisms deployed in today's Internet are focused on connectivity, not on resource availability in the network or QoS requirements of flows. In this paper, we present LayeredQoS, a new QoS-based multicast routing algorithm. We adopt the multiple CPs(Central Points) and allocate QoS-levels for each CP in order to improve the degree of resource sharing and decrease the total tree cost, and then network throughput is increased. The proposed protocol is verified by simulations and it is shown that the performance of LayeredQoS is much better than the existing protocols.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

Clustering and Routing Algorithm for QoS Guarantee in Wireless Sensor Networks (무선 센서 네트워크에서 QoS 보장을 위한 클러스터링 및 라우팅 알고리즘)

  • Kim, Soo-Bum;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.189-196
    • /
    • 2010
  • The LEACH does not use flooding method for data transmission and this makes low power consumption. So performance of the WSN is increased. On the other hand, QoS based algorithm which use restricted flooding method in WSN also achieves low power consuming rate by reducing the number of nodes that are participated in routing path selection. But when the data is delivered to the sink node, the LEACH choose a routing path which has a small hop count. And it leads that the performance of the entire network is worse. In the paper we propose a QoS based energy efficient clustering and routing algorithm in WSN. I classify the type of packet with two classes, based on the energy efficiency that is the most important issue in WSN. We provide the differentiated services according to the different type of packet. Simulation results evaluated by the NS-2 show that proposed algorithm extended the network lifetime 2.47 times at average. And each of the case in the class 1 and class 2 data packet, the throughput is improved 312% and 61% each.

Performance evaluations of a link state update mechanism considering traffic variation (트래픽 변화를 고려한 링크 상태 업데이트 알고리즘의 성능 분석)

  • Choi, Seung-Hyuk;Jung, Myoung-Hee;Yang, Mi-Jeong;Kim, Tae-Il;Park, Jae-Hyung;Chung, Min-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • To guarantee QoS (Quality of Service), routers should determine routing paths satisfying service requirements, based on link state information as well as network topology. Link status database (LSD) in routers should be efficiently managed to effectively reflect the current state of all links. However, there is a trade off between the exact reflection of the current link status and its update cost. For exactly reflecting the current link status, each router immediately notifies its neighbors that link state information is changed. This may degrade performance of the router due to the processing of link state update messages. On the other side, if the current link state information is not updated appropriately, a route setup request can be rejected because of the discrepancy between the current link state information and previously updated link state information in LSD. In this paper, we propose a traffic variation based link state update algorithm for adaptively controlling the generation of link state update messages and compare its performance with those of four existing algorithms by intensive simulations.

  • PDF

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

On Unicast Routing Algorithm Based on Estimated Path for Delay Constrained Least Cost (경로 추정 기반의 지연시간을 고려한 저비용 유니캐스트 라우팅 알고리즘)

  • Kim, Moon-Seong;Bang, Young-Cheol;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • The development of efficient Quality of Service (QoS) routing algorithms in high speed networks is very difficult since divergent services require various quality conditions, If the QoS parameter we concern is to measure the delay on that link, then the routing algorithm obtains the Least Delay (LD) path, Meanwhile, if the parameter is to measure of the link cast, then it calculates the Least Cost (LC) path. The Delay Constrained Least Cast (DCLC) path problem of the mixed issues on LD and LC has been shown to be NP-hard. The path cost of LD path is relatively mere expensive than that of LC path, and the path delay of LC path is relatively higher than that of LD path in DCLC problem. In this paper. we propose the algorithm based on estimated path for the DCLC problem and investigate its performance, It employs a new parameter which is probabilistic combination of cost and delay, We have performed empirical evaluation that compares our proposed algorithm with the DCUR in various network situations.

  • PDF