• Title/Summary/Keyword: qualitative features

Search Result 323, Processing Time 0.03 seconds

Establishment of DNN and Decoder models to predict fluid dynamic characteristics of biomimetic three-dimensional wavy wings (DNN과 Decoder 모델 구축을 통한 생체모방 3차원 파형 익형의 유체역학적 특성 예측)

  • Minki Kim;Hyun Sik Yoon;Janghoon Seo;Min Il Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • The purpose of this study establishes the deep neural network (DNN) and Decoder models to predict the flow and thermal fields of three-dimensional wavy wings as a passive flow control. The wide ranges of the wavy geometric parameters of wave amplitude and wave number are considered for the various the angles of attack and the aspect ratios of a wing. The huge dataset for training and test of the deep learning models are generated using computational fluid dynamics (CFD). The DNN and Decoder models exhibit quantitatively accurate predictions for aerodynamic coefficients and Nusselt numbers, also qualitative pressure, limiting streamlines, and Nusselt number distributions on the surface. Particularly, Decoder model regenerates the important flow features of tiny vortices in the valleys, which makes a delay of the stall. Also, the spiral vortical formation is realized by the Decoder model, which enhances the lift.

Does Live Streaming Allure the Unrestrained Buying Behavior?

  • Satinder Kumar;Garima Kathuria;Mansi Rani
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.493-517
    • /
    • 2024
  • E-commerce has grown to be perceived as an integral component of modern customers' lives. Fast innovation enables businesses to implement new business ideas that enhance customers' shopping experiences. The motive is to study the allurement of unrestrained buying behaviors resulting from Live Streaming Commerce in the presence of Emotional imagery. The conceptual model and hypotheses for the study have been framed based on the SOR model. A survey was conducted in north India, where data was collected from 577 consumers experiencing live streaming and analyzed with the help of AMOS and SPSS software. The repulsive behavior scale has been developed by using qualitative research. The findings revealed that there is a significant relationship between the stimulus of livestreaming and unrestrained buying behaviors with the mediating role of emotional imagination. Two crucial mediating factors, pleasure, and arousal (fervent imagination), have successfully predicted experiential shopping behavior. The study has implications for online marketers and policymakers, as marketers can use our developed model to understand consumers' different buying behaviors, and policymakers can select and design specific features for the social presence of live streaming. Integrating three different types of unrestrained buying behavior influenced by live streaming would add to the literature. The study adds value to the literature by developing a scale to measure repulsive behavior after testing and validating with experts.

Exploring the Working Mechanisms of Digital Shadow Work in Chinese Music Streaming Application Use: A Longitudinal Approach Using the Grounded Theory Method

  • Haoxi Wu;Joon Koh
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.421-446
    • /
    • 2024
  • Through Information and Communication Technology (ICT), the growth of music streaming platforms has revolutionized music consumption. "Digital Shadow Work" (DSW) refers to unpaid labor in digital spaces, with some prior research on its aspects. However, a comprehensive understanding is hindered by limitations in existing studies such as a lack of universality and dynamic exploration. To address these gaps and enable a comprehensive investigation into the role of DSW within highly versatile digital applications such as digital streaming platforms, this study employs a grounded theory methodology, a qualitative approach well-suited for exploring the intricacies of DSW among users of Chinese music streaming applications over a two-month period, involving longitudinal interviews with nine participants. The study findings elucidate the dynamic nature of DSW perceptions, which fluctuate across different stages of use and change in intensity over time. This study uncovers mixed attitudes towards DSW tasks, and observes a waning enthusiasm for social features over time, prompting some users to consider switching platforms. This study highlights the importance of thoughtful and user-centric feature development to enhance user satisfaction and the understanding of DSW, providing practical design and enhancement implications for music streaming applications.

The Behavior Analysis of Exhibition Visitors using Data Mining Technique at the KIDS & EDU EXPO for Children (유아교육 박람회에서 데이터마이닝 기법을 이용한 전시 관람 행동 패턴 분석)

  • Jung, Min-Kyu;Kim, Hyea-Kyeong;Choi, Il-Young;Lee, Kyoung-Jun;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.77-96
    • /
    • 2011
  • An exhibition is defined as market events for specific duration to present exhibitors' main products to business or private visitors, and it plays a key role as effective marketing channels. As the importance of exhibition is getting more and more, domestic exhibition industry has achieved such a great quantitative growth. But, In contrast to the quantitative growth of domestic exhibition industry, the qualitative growth of Exhibition has not achieved competent growth. In order to improve the quality of exhibition, we need to understand the preference or behavior characteristics of visitors and to increase the level of visitors' attention and satisfaction through the understanding of visitors. So, in this paper, we used the observation survey method which is a kind of field research to understand visitors and collect the real data for the analysis of behavior pattern. And this research proposed the following methodology framework consisting of three steps. First step is to select a suitable exhibition to apply for our method. Second step is to implement the observation survey method. And we collect the real data for further analysis. In this paper, we conducted the observation survey method to obtain the real data of the KIDS & EDU EXPO for Children in SETEC. Our methodology was conducted on 160 visitors and 78 booths from November 4th to 6th in 2010. And, the last step is to analyze the record data through observation. In this step, we analyze the feature of exhibition using Demographic Characteristics collected by observation survey method at first. And then we analyze the individual booth features by the records of visited booth. Through the analysis of individual booth features, we can figure out what kind of events attract the attention of visitors and what kind of marketing activities affect the behavior pattern of visitors. But, since previous research considered only individual features influenced by exhibition, the research about the correlation among features is not performed much. So, in this research, additional analysis is carried out to supplement the existing research with data mining techniques. And we analyze the relation among booths using data mining techniques to know behavior patterns of visitors. Among data mining techniques, we make use of two data mining techniques, such as clustering analysis and ARM(Association Rule Mining) analysis. In clustering analysis, we use K-means algorithm to figure out the correlation among booths. Through data mining techniques, we figure out that there are two important features to affect visitors' behavior patterns in exhibition. One is the geographical features of booths. The other is the exhibit contents of booths. Those features are considered when the organizer of exhibition plans next exhibition. Therefore, the results of our analysis are expected to provide guideline to understanding visitors and some valuable insights for the exhibition from the earlier phases of exhibition planning. Also, this research would be a good way to increase the quality of visitor satisfaction. Visitors' movement paths, booth location, and distances between each booth are considered to plan next exhibition in advance. This research was conducted at the KIDS & EDU EXPO for Children in SETEC(Seoul Trade Exhibition & Convention), but it has some constraints to be applied directly to other exhibitions. Also, the results were derived from a limited number of data samples. In order to obtain more accurate and reliable results, it is necessary to conduct more experiments based on larger data samples and exhibitions on a variety of genres.

A Study on the Effects of Search Language on Web Searching Behavior: Focused on the Differences of Web Searching Pattern (검색 언어가 웹 정보검색행위에 미치는 영향에 관한 연구 - 웹 정보검색행위의 양상 차이를 중심으로 -)

  • Byun, Jeayeon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.3
    • /
    • pp.289-334
    • /
    • 2018
  • Even though information in many languages other than English is quickly increasing, English is still playing the role of the lingua franca and being accounted for the largest proportion on the web. Therefore, it is necessary to investigate the key features and differences between "information searching behavior using mother tongue as a search language" and "information searching behavior using English as a search language" of users who are non-mother tongue speakers of English to acquire more diverse and abundant information. This study conducted the experiment on the web searching which is applied in concurrent think-aloud method to examine the information searching behavior and the cognitive process in Korean search and English search through the twenty-four undergraduate students at a private university in South Korea. Based on the qualitative data, this study applied the frequency analysis to web search pattern under search language. As a result, it is active, aggressive and independent information searching behavior in Korean search, while information searching behavior in English search is passive, submissive and dependent. In Korean search, the main features are the query formulation by extract and combine the terms from various sources such as users, tasks and system, the search range adjustment in diverse level, the smooth filtering of the item selection in search engine results pages, the exploration and comparison of many items and the browsing of the overall contents of web pages. Whereas, in English search, the main features are the query formulation by the terms principally extracted from task, the search range adjustment in limitative level, the item selection by rely on the relevance between the items such as categories or links, the repetitive exploring on same item, the browsing of partial contents of web pages and the frequent use of language support tools like dictionaries or translators.

Development of Predicting Models of the Operating Speed and Operating environment Satisfaction Model in Expressways (고속도로의 주행속도예측 및 주행환경만족도 모형 개발에 관한 연구)

  • Kim, Jang-Uk;Jang, Il-Jun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.117-131
    • /
    • 2009
  • When most drivers take to the freeway, they don't necessarily pay attention to the geometric design. They expect proper design by depending on their own senses and recognition. When they evaluate the features of traveling on the freeway, they can think differently than engineers. The design needs to predict the exact speed of the driver to satisfy the driver's expectation, safety, pleasure and so on. This study categorized the factors influencing the speed of six freeways considering geometric and operational features to make a prediction model of speed. The model used multiple regression with these factors and produced statically appropriate results. This study utilized the principle component analysis and the quantification II analysis based on the image data of the satisfaction of the traveling environment collected through individual interviews. As a result, this study found the factors of satisfaction in a traveling environment. It made a satisfaction model of the traveling environment on freeways considering the change of driver's actual recognition and societal recognition using structural equations and the quantification II theory. Through the model made in this study, This model can present not only qualitative factors like satisfaction of traveling environment on freeways, but also the quantitative elements like speed. What is important is the evaluation of features of traveling on freeways reflected in the recognition and traffic environment felt by drivers.

The I-MCTBoost Classifier for Real-time Face Detection in Depth Image (깊이영상에서 실시간 얼굴 검출을 위한 I-MCTBoost)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.25-35
    • /
    • 2014
  • This paper proposes a method of boosting-based classification for the purpose of real-time face detection. The proposed method uses depth images to ensure strong performance of face detection in response to changes in lighting and face size, and uses the depth difference feature to conduct learning and recognition through the I-MCTBoost classifier. I-MCTBoost performs recognition by connecting the strong classifiers that are constituted from weak classifiers. The learning process for the weak classifiers is as follows: first, depth difference features are generated, and eight of these features are combined to form the weak classifier, and each feature is expressed as a binary bit. Strong classifiers undergo learning through the process of repeatedly selecting a specified number of weak classifiers, and become capable of strong classification through a learning process in which the weight of the learning samples are renewed and learning data is added. This paper explains depth difference features and proposes a learning method for the weak classifiers and strong classifiers of I-MCTBoost. Lastly, the paper presents comparisons of the proposed classifiers and the classifiers using conventional MCT through qualitative and quantitative analyses to establish the feasibility and efficiency of the proposed classifiers.

A Qualitative Study on the Period-Specific Changes of Job Factors and Performance Features in Academic Libraries (질적 분석을 통한 대학도서관 업무의 시대별 수행 형태 및 요소 변화에 관한 연구)

  • Cho, Chul-Hyun;Noh, Dong-Jo
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.4
    • /
    • pp.137-165
    • /
    • 2015
  • This study aimed to investigate the period-specific changes (Library 1.0, Library 2.0, Library 3.0 Period) of job factors and performance features in academic libraries. For this, the study categorized an academic library's job into five dimensions: 1) library administration 2) collection development and management 3) information organization 4) information services and 5) information system development and management, After the categorized library's job was defined in detail, the Delphi survey was conducted twice on librarians and professors of library and information science. The result showed that there were many changes in job factors and performance features in academic libraries towards the period of library 2.0 characterized by user participation, sharing and openness and into library 3.0 characterized by social network and semantic web. Library 3.0 is likely to bring about a significant change in user services with ever changing technological advances stemming from library 2.0, such as mobile services, RFID and NFC etc. The finding of the study suggest that library systems need to be continually upgraded in the period of library 3.0.

Real-time Hand Region Detection based on Cascade using Depth Information (깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출)

  • Joo, Sung Il;Weon, Sun Hee;Choi, Hyung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.713-722
    • /
    • 2013
  • This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.

Automatic Geo-referencing of Sequential Drone Images Using Linear Features and Distinct Points (선형과 특징점을 이용한 연속적인 드론영상의 자동기하보정)

  • Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • Images captured by drone have the advantage of quickly constructing spatial information in small areas and are applied to fields that require quick decision making. If an image registration technique that can automatically register the drone image on the ortho-image with the ground coordinate system is applied, it can be used for various analyses. In this study, a methodology for geo-referencing of a single image and sequential images using drones was proposed even if they differ in spatio-temporal resolution using linear features and distinct points. Through the method using linear features, projective transformation parameters for the initial geo-referencing between images were determined, and then finally the geo-referencing of the image was performed through the template matching for distinct points that can be extracted from the images. Experimental results showed that the accuracy of the geo-referencing was high in an area where relief displacement of the terrain was not large. On the other hand, there were some errors in the quantitative aspect of the area where the change of the terrain was large. However, it was considered that the results of geo-referencing of the sequential images could be fully utilized for the qualitative analysis.