• Title/Summary/Keyword: quadratic function equation

Search Result 114, Processing Time 0.028 seconds

A study on the coupled vibration of train wheel and rail (차륜과 철로의 연성진동에 관한 연구)

  • 김광식;김찬묵;윤희욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.385-396
    • /
    • 1989
  • In this paper, using by the orthogonalities of modes for trainwheel (as Mindlin's annular plate and rail (as Timoshenko beam), the frequency equation of the coupled system are induced. It is convinced that the natural frequencies of coupled system are distributed to be about quadratic order function examined through the experimental and numerical analysis. The natural frequencies of the system coupled by both creep force and creep moment are composed of the natural frequencies of the system coupled by creep force and the natural frequencies of the system coupled by creep moment . And it is shown that the coupled natural frequencies up to 3rd do not make much difference from the values of the system coupled by individual creep force of creep moment. But the coupled natural frequencies higher than the 3rd are quite different from those of individual case.

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash;Trupti R Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.265-281
    • /
    • 2024
  • The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

The Relationship Between Smoke-Yields and Tipping Materials of the Cigarette (담배 연기발생과 Tipping 재료와의 상관성 연구)

  • Kim, Young-Hoh;Lee, Young-Taek;Kim, Sung-Han;Kim, Chung-Ryul;Kim, Jong-Yeol;Shin, Chang-Ho;Lee, Keun-Hoi
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.131-138
    • /
    • 1998
  • In order to minimize the trial frequency in the new filter cigarette design, we studied the relationship between smoke yield and tipping materials of cigarette. A three levels full factorial design involving filament denier (X1,2.5-3.3d), Porosity of the acetate filter plug wrap (X2, 3,500-16,000CU) and porosity of the tip paper (X3, 400-1,200CU) was used. Three independent factors (Xl, X2, X3) were chosen for their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation, Y : $\beta$o + $\beta$1Xl + $\beta$2X2 + $\beta$3X3 + $\beta$11Xl2 + $\beta$22X22+ $\beta$33X32 + $\beta$12X1X2 + $\beta$13XIX3 $\beta$23X2X3 which measures the linear, quadratic, and interaction effects. Twenty-nine trial numbers were obtained as a results of using a three levels full factorial design and it was analyzed by the multiple regression analysis with backward stepwise in STATISTICA/pc under restricted conditions. Tar yields of the cigarette was affected by porosity of tip paper (0.66), filament denier (0.47) and porosity of plug wrap (0.28) in the decreasing order, and linear effect of tip paper porosity (B3) and filament denier (91) were significant at a level of 0.01($\alpha$). The filament denier and tipping paper porosity interaction F ratio among three factors had a P-value of 0,000041, indicating higher interaction between these factors. Based on the analysis of variance, the model fitted for Tar (Y1) was significant at 5% confidence level and the coefficient of determination (0.96) was the proportion of variability in the data fitted for by the model.

  • PDF

Optimization of Crude Protein Recovery from Papaya Latex Extract Using Response Surface Methodology (반응표면 분석법을 이용한 Papaya 유액추출물에서 Crude Protein 회수 조건의 최적화)

  • Oh, Hoon-Il;Oh, Sang-Joon;Kim, Jeong-Mee
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.752-757
    • /
    • 1997
  • Crude papain extracted at optimum condition was purified with an ethanol precipitation method. Four factors of protein recovery method were optimized by response surface methodology (RSM) and the function was expressed in terms of a quadratic polynomial equation. Adequacy of the model equation for optimum response values was tested and optimum conditions of protein recovery were 38.2 mg/mL of protein, ethanol concentration of 40% and precipitation temperature of $-8^{\circ}C$. The experimental value (68.97%) for recovery yield was closed to the predicted value (77.28%) under these conditions.

  • PDF

Growth Model of Sowthistle (Ixeris dentata Nakai) Using Expolinear Function in a Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 씀바귀의 생육 모델)

  • Cha, Mi-Kyung;Son, Jung-Eek;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • The objective of this study was to make growth and yield models of sowthistle (Ixeris dentata Nakai) by using an expolinear functional equation in a closed-type plant production system. The growth and yield of hydroponically-grown sowthistle were investigated under four different planting distances ($15{\times}10$, $15{\times}15$, $15{\times}20$, and $15{\times}25$ cm). Shoot dry weights per plant was the highest at $15{\times}25$ cm, but was the lowest at $15{\times}10$ cm. Shoot dry weights per area was the highest at $15{\times}15$ cm, but was the lowest at $15{\times}25$ cm. The optimum planting density and planting distance for yield of sowthistle were 44 plants/$m^2$ and $15{\times}15$ cm, respectively. Shoot dry weights per plant and per area were showed as an expolinear type functional equation. A linear relationship between shoot dry and fresh weights was observed to be linear regardless of the planting distance. Crop growth rate, relative growth rate and lost time in an expolinear functional equation showed quadratic function form. Radiation use efficiency of sowthistle was $4.3-6.1g{\cdot}MJ^{-1}$. The measured and estimated shoot dry weights showed a good agreement using days after transplanting as input data. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of sowthistle in a closed-type plant production system.

Suspension of Sediment over Swash Zone (Swash대역에서의 해빈표사 부유거동에 관한 연구)

  • Cho, Yong Jun;Kim, Kwon Soo;Ryu, Ha Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.95-109
    • /
    • 2008
  • We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Temperature Response and Prediction Model of Leaf Appearance Rate in Rice (벼의 생육온도에 따른 출엽양상과 출엽속도 추정모델)

  • 이충근;이변우;윤영환;신진철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.202-208
    • /
    • 2001
  • Under the constant daylength of 13 hours and growth temperatures of 15$^{\circ}C$ to 27$^{\circ}C$, the final number of loaves (FNL) on the main culm was constant as 15 regardless of temperature in rice variety 'Kwanganbyeo'. Leaf appearance rate (LAR) increased with rising temperature and decreased with phenological development. Threshold temperature (T$_{o}$) was not constant across growth stages, but increased with phenological development. Effective accumulated temperature (EAT), which is calculated by the summation of values subtracting T0 from daily mean temperature, is closely related with number of leaves appeared (LA). LA was fitted to bilinear, quadratic, power and logistic function of EAT. Among the functions, logistic function had the best fitness of which coefficient of determination was $R^2$=0.995. Therefore, LAR prediction model was established by differentiating this function in terms of time: (equation omitted). where dL/dt is LAR, T$_1$ is daily mean temperature, L is the number of leaves appeared, and a, b, and c are constants that were estimated as 41.8, 1098.38, and -0.9273, respectively. When predictions of LA were made by LAR prediction model using data independent of model establishment, the observed and predicted LA showed good agreement of $R^2$$\geq$0.99.

  • PDF

Parameter Identification of Nonlinear Dynamic Systems using Frequency Domain Volterra model (비선형 동적 시스템의 파라미터 산정을 위한 주파수 영역 볼테라 모델의 이용)

  • Paik, In-Yeol;Kwon, Jang-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.33-42
    • /
    • 2005
  • Frequency domain Volterra model is applied to nonlinear parameter identification procedure for dynamic systems modeled by nonlinear function. The frequency domain Volterra kernels, which correspond io linear, quadratic, and cubic transfer functions in lime domain, are incorporated in nonlinear parametric identification procedure. The nonlinear transfer functions, which can be derived from the Volterra series representation of the nonlinear differential equation of the system by Schetzen's method(1980), are directly used for modeling input output relation. The error is defined by the difference between the observed output and the estimated output which is calculated by substituting the observed input to nonlinear frequency domain model. The system parameters are searched by minimizing the error. Volterra model guarantees enough accuracy and convergence and the estimated coefficients have a good agreement with their actual values not only in the linear frequency region but also in the legion where the $2^{nd}\;or\;3^{rd}$ order nonlinearity is dominant.

Predictive Modeling for the Growth of Salmonella Enterica Serovar Typhimurium on Lettuce Washed with Combined Chlorine and Ultrasound During Storage

  • Park, Shin Young;Zhang, Cheng Yi;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.374-379
    • /
    • 2019
  • This study developed predictive growth models of Salmonella enterica Serovar Typhimurium on lettuce washed with chlorine (100~300 ppm) and ultrasound (US, 37 kHz, 380 W) treatment and stored at different temperatures ($10{\sim}25^{\circ}C$) using a polynomial equation. The primary model of specific growth rate (SGR) and lag time (LT) showed a good fit ($R^2{\geq}0.92$) with a Gompertz equation. A secondary model was obtained using a quadratic polynomial equation. The appropriateness of the secondary SGR and LT model was verified by coefficient of determination ($R^2=0.98{\sim}0.99$ for internal validation, 0.97~0.98 for external validation), mean square error (MSE=-0.0071~0.0057 for internal validation, -0.0118~0.0176 for external validation), bias factor ($B_f=0.9918{\sim}1.0066$ for internal validation, 0.9865~1.0205 for external validation), and accuracy factor ($A_f=0.9935{\sim}1.0082$ for internal validation, 0.9799~1.0137 for external validation). The newly developed models for S. Typhimurium could be incorporated into a tertiary modeling program to predict the growth of S. Typhimurium as a function of combined chlorine and US during the storage. These new models may also be useful to predict potential S. Typhimurium growth on lettuce, which is important for food safety purposes during the overall supply chain of lettuce from farm to table. Finally, the models may offer reliable and useful information of growth kinetics for the quantification microbial risk assessment of S. Typhimurium on washed lettuce.

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF