• Title/Summary/Keyword: qRT- PCR primer

Search Result 17, Processing Time 0.024 seconds

Development of Quantitative Real-Time PCR Primers for the Detection of Aggregatibacter actinomycetemcomitans

  • Park, Soon-Nang;Park, Jae-Yoon;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of this study was to develop species-specific real-time quantitative PCR (RT-qPCR) primers for use in the detection of Aggregatibacter actinomycetemcomitans. These primers were designed based on the nucleotide sequences of the RNA polymerase ${\beta}$-subunit gene (rpoB). We assessed the specificity of the primers against nine strains of A. actinomycetemcomitans, eight strains (three species) of the Haemophilus genus, and 40 strains of 40 other oral bacterial species. Primer sensitivity was determined by testing serial dilutions of the purified genomic DNAs of A. actinomycetemcomitans ATCC $33384^T$. Our data reveal that we had obtained species-specific amplicons for all of the tested A. actinomycetemcomitans strains, and that none of these amplicons occurred in any of the other species. Our PCR protocol proved able to detect as little as 2 fg of A. actinomycetemcomitans chromosomal DNA. Our findings suggest that these qRT-PCR primers are suitable for application in epidemiological studies.

The Genes Expression Patterns Induced by High Temperature in Licorice (Glycyrrhiza uralensis F.) (온도상승에 따른 감초(Glycyrrhiza uralensis Fisch.)의 유전자 발현 양상)

  • Hyeju Seong;Woosuk Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.56-56
    • /
    • 2020
  • 감초는 다년생 콩과(Leguminocae) 식물로 국내에서 시중가격이 높은 만주감초가 일부 재배되고 있다. 우리나라에서 감초 재배법이 불완전한 상황에서 한반도의 기후변화에 의한 온도 상승은 약용작물의 생산 및 품질에 많은 영향을 미칠 것으로 예상되므로 본 연구에서는 재배환경 중 온도 조건만 조절할 수 있는 온도구배터널(temperature gradient tunnel system)을 이용하여 4개의 T1(외기온도+0.5~1.3℃), T2(+1.3~2.2℃), T3(+2.2~3.2℃), T4(+3.2~4.0℃) 처리로 온도구배 하여 4년생 만주감초(Glycyrrhiza uralensis F.)를 재배하였다. 지하부가 오래된 모주와 신초1의 경우 저온(T1)과 중간구간(T2, T3)에서 초장과 총화수가 우세하였고, 번식이 가장 늦은 신초2의 경우 중간구간(T2, T3)에서의 생육 및 개화반응이 뚜렷했다. 각 온도처리구마다 3개의 감초 개체를 선발하여 모주의 정단으로부터 5개의 성엽을 채취하였다. Reverse transcription quantitative PCR (RT-qPCR)은 AccuPower® GreenStarTM RT-qPCR Master Mix (Bioneer, Korea)를 이용하여 진행되었다. Primer 디자인은 NCBI Primer-blast 프로그램을 사용해 제작하였고 ABI StepOne real time system (Applied Biosystem)의 melting curve analysis에서 one-peak test를 통해 gene specific primer임을 확인하였다. 각 온도처리구의 감초 잎에서 RNA를 추출하였고, RT-qPCR을 통해 감초의 유전자 발현양상을 비교, 분석하였다. Phytochrome interacting factor 4 (PIF4)는 식물 호르몬을 유발하는 전사조절을 조정함으로써 고온 신호전달에 핵심적인 역할을 수행한다. 활성화된 Phytochrome B(PhyB)는 PIF4의 활성을 억제한다고 알려졌다. Eukaryotic initiation factors(eIFs)는 mRNA 번역 개시인자로 유전자 발현과 특정 단백질 생산을 조절하는 역할을 한다. 본 결과는 온도조건에서 반응하는 생리적 변화를 전사체 수준에서 조사 분석하여 생리해석의 기초자료로 활용, 국내 감초 재배를 위한 환경조건 구명 및 적지 선정 기초자료로서 활용을 기대한다.

  • PDF

Development and Evaluation of a SYBR Green Real-time PCR Assay for Canine Cytokine Gene Expression (SYBR Green 실시간 역전사 중합효소연쇄반응을 이용한 개 싸이토카인 유전자 발현의 정량)

  • Yu, Do-Hyeon;Ihn, Dong-Chul;Park, Chul;Park, Jin-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.5
    • /
    • pp.508-513
    • /
    • 2010
  • Cytokines are important mediators of the immune response, and quantitating cytokine mRNA is a highly sensitive and attractive method for measuring cytokine production. The objective of the current study was to develop and validate a SYBR green quantitative real-time reverse transcriptase PCR (qRT-PCR) assay for measuring canine cytokine mRNA. The optimal annealing temperatures ($T_a$) of the designed primers were $62^{\circ}C$ for interleukin (IL)-$1{\beta}$, IL-6 and IL-10; $60^{\circ}C$ for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tumor necrosis factor (TNF)-${\alpha}$; and $58^{\circ}C$ for high mobility group box 1 (HMGB1). Primer efficiencies of all primers calculated for standard curve samples were between 97.1% and 102.6%. No evidence of secondary structure or primer-dimer formation was seen via melt-curve analysis or gel electrophoresis. The developed qRT-PCR assays are highly specific and sensitive and can be used to quantify gene expression levels of canine cytokines.

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.

Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets

  • Park, Changwoo;Lee, Jina;Hassan, Zohaib ul;Ku, Keun Bon;Kim, Seong-Jun;Kim, Hong Gi;Park, Edmond Changkyun;Park, Gun-Soo;Park, Daeui;Baek, Seung-Hwa;Park, Dongju;Lee, Jihye;Jeon, Sangeun;Kim, Seungtaek;Lee, Chang-Seop;Yoo, Hee Min;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.358-367
    • /
    • 2021
  • The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.

Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene

  • Jinuk Jeong;Yunseok Oh;Junhyeon Jeon;Dong-Heon Baek;Dong Hee Kim;Kornsorn Srikulnath;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.13.1-13.8
    • /
    • 2023
  • Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria 'Porphyromonas gingivalis', and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)-based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis-specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

Validation of Stem-loop RT-qPCR Method on the Pharmacokinetic Analysis of siRNA Therapeutics (Stem-loop RT-qPCR 분석법을 이용한 siRNA 치료제의 생체시료 분석법 검증 및 약물 동태학적 분석)

  • Kim, Hye Jeong;Kim, Taek Min;Kim, Hong Joong;Jung, Hun Soon;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.653-661
    • /
    • 2019
  • The first small interfering RNA (siRNA) therapeutics have recently been approved by the Food and Drug Administration in the U.S., and the demand for a new RNA therapeutics bioanalysis method-which is essential for pharmacokinetics, including the absorption, distribution, metabolism, and excretion of siRNA therapeutics-is rapidly increasing. The stem-loop real-time qPCR (RT-qPCR) assay is a useful molecular technique for the identification and quantification of small RNA (e.g., micro RNA and siRNA) and can be applied for the bioanalysis of siRNA therapeutics. When the anti-HPV E6/E7 siRNA therapeutic was used in preclinical trials, the established stem-loop RT-qPCR assay was validated. The limit of detection was sensitive up to 10 fM and the lower limit of quantification up to 100 fM. In fact, the reliability of the established test method was further validated in three intra assays. Here, the correlation coefficient of $R^2$>0.99, the slope of -3.10 ~ -3.40, and the recovery rate within ${\pm}20%$ of the siRNA standard curve confirm its excellent robustness. Finally, the circulation profiles of siRNAs were demonstrated in rat serum, and the pharmacokinetic properties of the anti-HPV E6/E7 siRNA therapeutic were characterized using a stem-loop RT-qPCR assay. Therefore, the stemloop RT-qPCR assay enables accurate, precise, and sensitive siRNA duplex quantification and is suitable for the quantification of small RNA therapeutics using small volumes of biological samples.

Gene Expression Analysis of Pregnant Specific Stage in the Miniature Pig Ovary

  • Yun, Seong-Jo;Noh, Won-Gun;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The miniature pig is considered to be a better organ donor breed for xenotransplantation than other pig breeds because the size of the organs of the miniature pig is similar to that of humans. In this study, we aimed at identifying differentially expressed genes in the miniature pig ovary during pregnancy. For this, we used the miniature pig ovary model, annealing control primer-based reverse transcription polymerase chain reaction (PCR), quantitative real-time PCR (qRT-PCR), and northern blotting analysis. We identified 13 genes showing differential expression on the based of pregnancy status and validated 8 genes using qRT-PCR. We also sequenced the full-length cDNA of ephrin receptor A4 (EphA4), which had a significant difference in expression level, and validated it by northern blotting. These genes may provide a better understanding of the cellular and molecular mechanisms during pregnancy in miniature pig ovary.