• 제목/요약/키워드: pyrolysis oil

검색결과 251건 처리시간 0.026초

병뚜껑의 열분해에 대한 연구 (Research for Pyrolysis of Metal Caps)

  • 황재영;진달샘;서무룡
    • 한국환경과학회지
    • /
    • 제19권12호
    • /
    • pp.1355-1359
    • /
    • 2010
  • The application of metal caps has been continuously increased as real life are extended. Metal caps is usually made of aluminum and polyethylene(PE) as packing. Since metal caps contain 75% aluminum on a weight basis, metal caps may be a valuable source when these were properly recovered. The recovery methods of metal caps have mechanical peeling and incineration. However these are either hard to apply in some case or environmentally unacceptable. So in this investigation, recovery method of aluminum from metal caps was investigated using pyrolysis. The result shows that pyrolysis temperature and pyrolysis time was $450^{\circ}C$ and 120min. respectively. Also 100% of aluminum was recovered from metal caps. Heat content of recovered oil was high enough to use as a fuel representing 7,425.0, 7,793.1, 7,583.2, 7,726.2(cal/g). Heavy metal contens in the oil were under regulatory limit indicating.

플라스틱 폐기물의 건류 및 열분해 (Gasification and Pyrolysis Technology for the Treatment of Plastics Waste)

  • 김영성
    • 공업화학
    • /
    • 제3권2호
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향 (The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil)

  • 박영철;최주홍;조태호
    • 에너지공학
    • /
    • 제17권1호
    • /
    • pp.8-14
    • /
    • 2008
  • 폐 농업용 비닐을 이용한 연료유 생산 공정을 위한 저밀도폴리에틸렌(LDPE)과 에틸렌비닐아세테이트(EVA) 수지에 대한 열분해 반응 실험을 하였다. 질소 분위기에서 상온에서 $650^{\circ}C$까지의 비등온 조건에서의 열분석기(열중량분석기, 시차주사열량계)와 $420^{\circ}C$의 배치형 반응기에서 무촉매반응과 소성 백운석,소성 석회석, 소성 굴껍질 등의 칼슘계 촉매를 사용한 열분해가 행하여졌다. TGA 실험에서 가열속도에 따라서 LDPE의 열분해 개시온도는 $330{\sim}360^{\circ}C$로 변화되었다. EVA 수지는 $300{\sim}400^{\circ}C$의 1차분해영역과 $425{\sim}525^{\circ}C$의 2차분해 영역에서 열분해 되었다. LDPE 수지에 10% 칼슘계 촉매 첨가 시 소성백운석 첨가가 반응 속도를 증가시켰다. EVA 수지 열분해 실험에서는 칼슘계 촉매 첨가가 열분해 반응을 다소 지연시켰다. DSC 실험에서 칼슘계 촉매는 LDPE 수지 원료의 융해개시온도는 다소 낮추었지만 융해열에 대하여는 영향이 없었다. 소성백운석 첨가 시 열분해열을 20% 정도 감소시켰다. 회분식 반응기에서 소성백운석과 소성 석회석 첨가 시 연료유 생성 수율을 높였으나, 생성 연료유 내의 탄소 수 분포에는 큰 영향이 없었다.

유연탄의 이단 열분해에 따른 생성물의 특성 (The Product properties of Bituminous Coal in Two-Stage Pyrolysis)

  • 송광섭;이상남;윤형기;김상돈
    • 에너지공학
    • /
    • 제2권2호
    • /
    • pp.208-214
    • /
    • 1993
  • 직접 연소시 다량의 공해물질이 배출되는 유연탄을 가공하여 산업용 및 도시가스로 활용이 가능한 고열량 가스(발열량 : 7000 kca1/N㎥)를 생산하기 위한 유연탄 가공 기술개발 연구의 일환으로 고정층 유연탄 이단 열분해 실험을 수행하였다. 본 연구에서는 코우크스 촉매를 사용하여 열분해온도를 468, 516, 5$65^{\circ}C$, 촉매분해온도를 700, 750, 800, 85$0^{\circ}C$로 변화시키면서 이단열분해 조건이 생성물의 특성에 미치는 영향을 조사하였다. 동진탄에 대하여 코우크스 촉매를 사용하여 이단 열분해 실험을 수행한 결과 촉매에 퇴적되는 탄소량은 생성 tar의 5% 이하였으며, 전체 석탄에너지중 15% 정도가 고열량 가스로 회수되는 것을 확인하였다. Tar 중에 포함된 oil성분의 양은 이단 열분해의 경우가 저온 열분해에서 보다 많이 생성되었으며, 열분해온도가 5$65^{\circ}C$ 인 경우 생성된 tar는 516$^{\circ}C$에서 생성된 tar보다 이단 열분해의 경우 촉매 분해가 잘 되지 않았다. 생성가스의 분석 견과는 촉매분해온도가 80$0^{\circ}C$ 이상이면 에틸렌의 분해속도가 급격히 증가하므로 80$0^{\circ}C$ 이하로 유지하는 것이 적절함을 보여준다.

  • PDF

촉매열분해를 이용한 백합나무 바이오오일의 연료 특성 (Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis)

  • 채광석;정한섭;안병준;이재정;주영민;이수민
    • 한국응용과학기술학회지
    • /
    • 제34권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 바이오오일은 고품질 화학물질로 이용이 가능하며 차세대 탄화수소 연료와 석유정제업 공급원료로 사용할 수 있기 때문에 촉망받는 신재생에너지의 하나로 상당한 관심을 받고 있다. 또한 제올라이트는 급속열분해 과정에서 크래킹 반응을 효과적으로 촉진시켜 탈산소 반응을 증가 시키고 탄화수소가 많은 안정된 바이오오일을 만든다. 그래서 본 연구에서는 백합나무 바이오오일 품질개선을 위해 촉매열분해(Control, Blackcoal, Whitecoal, ZeoliteY 및 ZSM-5)를 적용하여 특성을 조사하였다. 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 백합나무 시료 500 g을 $465^{\circ}C$에서 1.6초 동안 촉매열분해하여 바이오오일을 제조하였다. 촉매 조건 상태에서 바이오오일의 수율은 Control(54.0%)과 비교하여 Blackcoal(56.2%)를 제외하면, Whitecoal(53.5%), ZeoliteY (51.4%), 및 ZSM-5(52.0%)로 모두 감소했다. 수분 함량이 Control(37.4%)에서 촉매 처리후 37.4~45.2%로 증가함에 따라 발열량((High heating value)은 감소했다. 그러나 다른 다른 바이오오일 특성은 개선되었다. 촉매 적용 결과 바이오오일의 회분과 전산가(TAN)가 감소했고, 특히 수송연료로 중요한 특성인 점도는 Control cP(6,933) 에서 2,578 ~ 4,627 cP로 감소했다. 또한 ZeoliteY는 방향족탄화수소를 생산하고 점도를 개선시키는데 가장 효과적이였다.

경유와 바이오오일 혼합연료의 연소에 대한 실험연구 (Experimental Study on Combustion of Boiler Fuel Made of Light-Oil and Bio-Oil)

  • 양제복;이인구;황경란
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-204
    • /
    • 2012
  • Combustion characteristics of boiler fuels made of bio-oil and light-oil were experimentally investigated. Bio-oil was obtained by fast pyrolysis of woody biomass. Emulsion fuel made by mixing bio-oil (up to 30wt%) with light-oil and surfactant was completely burnt, resulting in the formation of combusted gas containing CO concentration less than 10ppm. Simple mixtures of bio-oil and light-oil with separate delivery lines also gave nice combustion characteristics.

  • PDF

디젤유/바이오디젤유-열분해유-부탄올 혼합유의 디젤 엔진 적용 가능성에 관한 연구 (A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine)

  • 김호승;장영운;이석환;김태영;강건용;윤준규
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.116-125
    • /
    • 2014
  • Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.

KIER의 열분해유화 공정 기술과 실증플랜트 소개 (Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant)

  • 신대현;전상구;김광호;이경환;노남선;이기봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구 (Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine)

  • 이석환;장영운;김호승;김태영;강건용;임종한
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.

마이크로웨이브 열분해를 이용한 폴리스티렌으로부터의 고분자 원료 물질의 회수에 관한 연구 (Study on the Recovery of Polymeric Raw-materials from Waste Polystyrene by the Microwave Thermal Decomposition)

  • 강태원;유효운;황택성
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2003년도 추계정기총회 및 국제심포지엄
    • /
    • pp.190-195
    • /
    • 2003
  • A novel microwave-induced pyrolysis of polystyrene in motor oil was performed using a quartz tube reactor with silicon carbide as the microwave absorbent. Different pyrolysis conditions were investigated, such as time range from 30 minutes to 1 hour and power range from 180 to 250 watt. The distillate components were analyzed with GC-MS, and styrene, 1-methyl styrene, toluene, ethyl benzene were the four main products. Among these, styrene took over 70 percentages. Temperature of the complete pyrolysis using microwave was much lower than that of conventional thermal pyrolysis method.

  • PDF