• Title/Summary/Keyword: pyrimidines

Search Result 46, Processing Time 0.022 seconds

Synthesis and In Vitro Evaluation of Some Novel Benzofuran Derivatives as Potential Anti-HIV-1, Anticancer, and Antimicrobial Agents

  • Rida, Samia M.;EI-Hawash, Soad A.M.;Fahmy, Hesham T.Y.;Hazza, Aly A.;EI-Meligy, Mostafa M.M.
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.16-25
    • /
    • 2006
  • A novel series of 1-(1-benzofuran-2-yl-ethylidene)-4-substituted thiosemicarbazides (2a-d) along with some derived ring systems: substituted-2,3-dihydro-thiazoles(3a-c, 4a-f) and thiazolidin-4-ones(5a-d and 6a-d), were synthesized. In addition, cyanoacetic acid-(1-benzofuran-2-yl-ethylidene) hydrazide(7) was used to prepare another new series of compounds consisting of substituted pyridin-2(1H)-ones(8a-c); 2-thioxo-2,3-dihydro-thiazoles(9a-d) and 2-thioxo-2,3-dihydro-6H-thiazolo[4,5-d]pyrimidin-7-ones (10a-c, 11a-c). The absolute configuration of compound 5c was determined by X-ray crystallography. The compounds prepared were evaluated for their in vitro anti-HIV, anticancer, antibacterial, and antifungal activities. Among the tested compounds, compounds 5c and 9a produced a significant reduction ㅐ ㄹ the viral cytopathic effect (93.19% and 59.55%) at concentrations $>2.0{\times}10^{-4}\;M\;and\;2.5{\times}10^{-5}\;M$respectively. Compound 9a was confirmed to have moderate anti-HIV activity. Compounds 2a, 2d, and 5c showed mild antifungal activity. However, none of the tested compounds showed any significant anticancer activity.

Synthesis and herbicidal activities of 3,4,5,6-tetrahydrophthalimides substituted with pyrimidines (피리미딘이 치환된 3,4,5,6-tetrahydrophthalimide 유도체의 합성과 제초활성)

  • Ryu, Jae-Wook;Lee, Min-Ju;Chung, Kun-Hoe;Ko, Young-Kwan;Woo, Jae-Chun;Koo, Dong-Wan;Kim, Tae-Joon;Cho, Jung-Sub;Kim, Dae-Whang
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.262-265
    • /
    • 2006
  • A series of N-[4-chloro-2-fluoro-5-(2-(substituted)pyrimidinyloxy)phenyl]-3,4,5,6-tetrahydrophthalimides was synthesized, and the herbicidal activities of those derivatives were evaluated through pre- and post-emergence application under upland conditions in a greenhouse. The results showed that most compounds resulted in stronger herbicidal activities on broadleaf weeds than on grass weeds. The N-[4-chloro-2-fluoro-5-(2-pyrimidinyloxy)phenyl]-3,4,5,6-tetrahydrophthalimide showed the best weed control efficacy and marginal corn safety at a rate of 60 g/ha through pre-emergence application.

Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach (프로테옴 분석에 의한 Bacillus subtilis PyrR 돌연변이체의 특성)

  • Seul, Keyung-Jo;Cho, Hyun-Soo;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The Bacillus subtilis pyrimidine biosynthetic (pyr) operon encodes all of the enzymes for the de novo biosynthesis of Uridine monophosphate (UMP) and additional cistrones encoding a uracil permease and the regulatory protein PyrR. The PyrR is a bifunctional protein with pyr mRNA-binding regulatory funtion and uracil phosphoribosyltransferase activity. To study the global regulation by the pyrR deletion, the proteome comparison between Bacillus subtilis DB104 and Bacillus subtilis DB104 ${\Delta}$pyrR in the minimal medium without pyrimidines was employed. Proteome analysis of the cytosolic proteins from both strains by 2D-gel electrophoresis showed the variations in levels of protein expression. On the silver stained 2D-gel with an isoelectric point (pI) between 4 and 10, about 1,300 spots were detected and 172 spots showed quantitative variations in which 42 high quantitatively variant proteins were identified. The results showed that production of the pyrimidine biosynthetic enzymes (PyrAA, PyrAB, PyrB, PyrC, PyrD, and PyrF) were significantly increased in B. subtilis DB104 ${\Delta}$pyrR. Besides, proteins associated carbohydrate metabolism, elongation protein synthesis, metabolism of cofactors and vitamins, motility, tRNA synthetase, catalase, ATP-binding protein, and cell division protein FtsZ were overproduced in the PyrR-deficient mutant. Based on analytic results, the PyrR might be involved a number of other metabolisms or various phenomena in the bacterial cell besides the pyrimidine biosynthesis.

Analysis of Higher Order Structure of 5S rRNA from Xanthomonas celebensis by Using Angiogenin (안지오제닌을 이용한 Xanthomonas celebensis 5S rRNA의 고차원 구조 분석)

  • Kim, Sang Beom;Jo, Bong Rae;Im, Ja Hye;Jang, Su Ik;Park, In Won
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.769-773
    • /
    • 1994
  • Higher order structure of 5S rRNA isolated from Xanthomonas celebensis was examined using angiogenic extracted from milk. Angiogenin cleaved exclusively 3' P-O bonds on the far sides of pyrimidines in the single-stranded sequences of 5S rRNA. Whereas angiogenin acted only on the loop d of 5S rRNA at pH 7.0 in the presence of 10 mM $Mg^{2+}$, it acted on all the loops (a, b, c and d) except loop e in the absence of $Mg^{2+}$. In the absence of $Mg^{2+}$, bonds $U_{74}$-$G_{75}$, $U_{77}$-$A_{78}$ and $U_{103}$-$A_{104}$ were highly susceptible to the action of angiogenin both at pH 7.0 and at pH 3.5. On the other hand, at pH 3.5 in the absence of $Mg^{2+}$ angiogenin strongly cleaved the bond $C_{17}$-$G_{18}$ of loop a and the bond $U_{55}$-$G_{56}$ of loop b. The results lead us to the following conclusion. First, angiogenin can be used as one of the probes for the tertiary structure analysis of 5S rRNA. Second, the structure of loop d of 5S rRNA is variable depending on the concentrations of $Mg^{2+}$ and $H^{1+}$.

  • PDF

Characterization and Functional Study of PyrR Orthologues from Genome Sequences of Bacteria (세균 게놈 유래성 PyrR Orthologue의 기능 분석)

  • 김사열;조현수;설경조;박승환
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.103-110
    • /
    • 2003
  • The regulation of pyrimidine nucleotide synthesis has been proved to be controlled by a regulatory protein PyrR-mediated attenuation in the Gram-positive bacteria. After several bacterial genome sequencing projects, we have discovered the PyrR orthologues in the databases for Haemophilus influenzae and Synechocystis and sp. PCC6803 genome sequences. To investigate whether these PyrR orthologue proteins regulate pyrimidine nucleotide synthesis as well as the cases of Bacillus, the PyrR regions of each strains were amplified by PCR and cloned with pUC19 or T-vector in Escherichia coli and with a shuttle vector pHPS9 for E. coli and B. subtilis. For the regulation test of the PyrR orthologues, the aspartate-transcarbamylase (ATCase) assay was carried out. From the results of the ATCase assay, it was confirmed that Synechocystis sp. PCC6803 could not restore by pyrimidines to a B. subtilis, PyrR but H. influenzae PyrR could. For Purification of PyrR orthologue proteins, PyrR orthologue genes were cloned into the expression vector (pET14b). Over-expressed product of PyrR orthologue genes was purified and analyzed by the SDS-PACE. The purified PyrR orthologue proteins from H. influenzae and Synechocystis sp. PCC6803 turned out to be molecular mass of 18 kDa and 21 kDa, respectively. The result of uracil phosphoribosyl transferase (UPRTase) assay with purified PyrR orthologue proteins showed that H. influenzae PyrR protein only has UPRTase activity. In addition, we could predict several regulatory mechanisms that PyrR orthologue proteins regulate pyrimidine de novo synthesis in bacteria, through phylogenetic analysis for PyrR orthologue protein sequences.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.