• Title/Summary/Keyword: pyridoxal phosphate-dependent aminotransferase

Search Result 4, Processing Time 0.021 seconds

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli

  • Lee, Jongchan;Heo, Lynn;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.673-680
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

A Stereochemical Aspect of Pyridoxal 5' -Phosphate Dependent Enzyme Reactions and Molecular Evolution

  • Jhee, Kwang-Hwan;Tohru, Yoshimura;Yoichi, Kurokawa;Nobuyoshi, Esaki;Kenji, Soda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.695-703
    • /
    • 1999
  • We have studied the stereospecificities of various pyridoxal 5'-phosphate (PLP) dependent enzymes for the hydrogen transfer between the C-4' of a bound coenzyme and the C-2 of a substrate in the transamination catalyzed by the enzymes. Stereospecificities reflect the structures of enzyme active-sites, in particular the geometrical relationship between the coenzyme-substrate Schiff base and the active site base participating in an $\alpha$-hydrogen abstraction. The PLP enzymes studied so far catalyze only a si-face specific (pro-S) hydrogen transfer. This stereochemical finding suggests that the PLP enzymes have the same topological active-site structures, and that the PLP enzymes have evolved divergently from a common ancestral protein. However, we found that o-amino acid aminotransferase, branched chain L-amino acid aminotransferase, and 4-amino-4-deoxychorismate lyase, which have significant sequence homology with one another, catalyze a re-face specific (pro-R) hydrogen transfer. We also showed that PLP-dependent amino acid racemases, which have no sequence homology with any aminotransferases, catalyze a non-stereospecific hydrogen transfer: the hydrogen transfer occurs on both faces of the planar intermediate. Crystallographical studies have shown that the catalytic base is situated on the re-face of the C-4' of the bound coenzyme in o-amino acid aminotransferase and branched chain L-amino acid aminotransferase, whereas the catalytic base is situated on the si-face in other aminotransferases (such as L-aspartate aminotransferase) catalyzing the si-face hydrogen transfer. Thus, we have clarified the stereospecificities of PLP enzymes in relation with the primary structures and three-dimensional structures of the enzymes. The characteristic stereospecificities of these enzymes for the hydrogen transfer suggest the convergent evolution of PLP enzymes.

  • PDF

ENZYMATIC STUDIES ON VITAMIN B6 METABOLISM

  • Kim, Young-Tae
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 1993
  • Vitamin B6(pyridoxine, pyridoxamine. and pyridoxal) is a dietary requirement in relatively small quantities for growth, health, and function in animals and fish. The metabolically active B6 is pyridoxal-5-phosphate(PLP). It does function as a coenzyme in number of enzymes(PLP-dependent enzymes) in which amino acids are metabolized, including decarboxylases, aminotransferases, sulfhydrases, tryptophanase, and hydroxylases. Vitamin B6 requirement is higher for fish because fish are fed much higher protein diet than land animals. B6 is also involved in metabolism of carbohydrates and lipids and essential for the synthesis of heme and serotonin. Deficiency signs in fish develop quickly, in cluding nervous disorders, convulsions, poor swimming coordination, skin lesions, edema, exophthalmos, and tetany. The conversion of vitamin B6 to metabolically active form(PLP) is catalyzed by pyridoxal kinase and pridoxine(pyridoxamine) oxidase. In this review, we summarized in detail the enzymatic studies on vitamin B6 metabolism and about the mechanisms and properties of a PLP-dependent enzyme.

  • PDF

Involvement of Pyridoxine/Pyridoxamine 5′- Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root

  • Kim, Gyuree;Jang, Sejeong;Yoon, Eun Kyung;Lee, Shin Ae;Dhar, Souvik;Kim, Jinkwon;Lee, Myeong Min;Lim, Jun
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1033-1044
    • /
    • 2018
  • As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5′-phosphate (PNP)/pyridoxamine 5′-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5′-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.