• Title/Summary/Keyword: purlins

Search Result 24, Processing Time 0.026 seconds

A study on the Structure and Design Concept of Asymmetrical Building with 4 Purlins in the Joseon Dynasty (조선시대 측4량가 건축의 구조와 특징)

  • Kim, Bue-Dyel;Lee, Jong-Seo
    • Journal of architectural history
    • /
    • v.28 no.6
    • /
    • pp.7-18
    • /
    • 2019
  • This study is to find out the design concept of asymmetrical building with 4 purlins mainly in Sungkyunkwan(Confucian Shrines), Changgyeonggung palace and Changdeokgung palace The results are as follows: First, asymmetrical building with 4 purlins has the same height pillars, which was useful to control the side lenght and put a higher pillar without limit. Second, the side length of the asymmetrical building with 4 purlins is between 12 to 14 Ja[尺]. It's relatively longer than the minimum length(12 Ja) of 5 purlins architecture seen in later Joseon dynasty. Third, asymmetrical building with 4 purlins was not an anomalous structure when compared to 3 purlins and 5 purlins. It was actually a traditional style, unlike the current architectural recognition nowadays, which mainly focused on the balanced roof structure. These examples show that the architectures in Early Joseon dynasty were planned and constructed first according to the plane division that fit in a specific use or space.

Numerical parametric analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips

  • Zhang, Yingying;Song, Xiaoguang;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • This paper presents the parametric numerical analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips. The effects of several factors on failure modes and ultimate bearing capacity of the purlins are studied, including setup of anti-sag bar, purlin type, sheet thickness and connection type et al. A simplified design formula is proposed for predicting the ultimate bearing capacity of purlins. Results show that setting the anti-sag bars can improve the ultimate bearing capacity and change the failure modes of C purlins significantly. The failure modes and ultimate bearing capacity of C purlins are significantly different from those of Z purlins, in the purlin-sheet roof connected by standing seam clips. Setting the anti-sag bars near the lower flange is more favorable for increasing the ultimate bearing capacity of purlins. The ultimate bearing capacity of C purlins increases slightly with sheet thickness increasing from 0.6 mm to 0.8 mm. The ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips is always higher than those by self-drilling screws. The predictions of the proposed design formulas are relatively in good agreement with those of EN 1993-1-3: 2006, compared with GB 50018-2002.

The use of small scale model testing to compare connection methods of steel purlins

  • Urquhart, Stephen M.;Kavanagh, Kenneth T.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.571-582
    • /
    • 1998
  • Testing of steel roof purlins is usually performed on full scale models in large vacuum test rigs. To undertake a comparison between web cleat connected purlins and flange bolted purlins a series of tests were performed on a 1:4 small scale model vacuum test rig. Various modelling issues need to be addressed to ensure reasonable comparison with actual constructed roof framing methods but still be suitable for an economical comparison between the connection methods. Model test results were supported by, and found to be in reasonable agreement with, deflection predictions from computer models based on finite element methods. This paper discusses the testing methods adopted and the value of small scale model testing programs as a means of obtaining comparisons between framing options.

Numerical Parametric Analysis of the Ultimate Loading-Capacity of Channel Purlins with Screw-Fastened Sheeting

  • Zhang, Yingying;Xue, Jigang;Song, Xiaoguang;Zhang, Qilin
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1801-1817
    • /
    • 2018
  • This paper presents the numerical parametric analysis on the loading capacity of Channel purlins with screw-fastened sheeting, in which the effects of anti-sag bar and corrugated steel sheet on the ultimate capacity are studied. Results show that the setup of anti-sag bars can reduce the deformations and improve the ultimate capacity of C purlins. The traditional method of setting the anti-sag bars in the middle of the web is favorable. The changing of sheeting type, sheeting thickness and rib spacing has significant effects on the ultimate capacity of C purlins without anti-sag bars, compared with those with anti-sag bars. The proposed design formulas are relatively consistent with the calculations of EN 1993-1-3:2006, which is different from those of GB 50018-2002.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

A Study on the Architectural Design Characteristics of the Plan and the Structure in Sudeok Temple's Daeung-Jean (건축설계 측면에서 본 수덕사 대웅전의 평면과 가구 특성에 관한 연구)

  • Kim, Do-Kyoung
    • Journal of architectural history
    • /
    • v.17 no.4
    • /
    • pp.97-112
    • /
    • 2008
  • In this study, I attempted to the architectural design characteristics of Daeung-Jeon in Sudeok Temple. For this purpose, After I set up several assumptions in the basis of the general characteristics of Korean wood architecture, and then, analyzed floor plan, structural formation and section sizes of structure and bracket members in relation to module and unit. As the results, the characteristics of the design process of plan and structure are follows. (1) 1 ja(尺), the unit applied to this building is measured $307.6{\sim}318.3mm$) and the average is 312.9mm (2) It is estimated that the floor plan designed on the basis of the top of columns. By the applied unit, every bay of the front side and the side is each designed by 15 ja and 8.5 ja. (3) The section is composed of piled members which have same section size. As basic module of section size called 'jae(재;材)', it is estimated at width 0.45 ja by height 0.75 ja. And as the secondary module, height between jae and is called 'gyoe(계;)' and it wes designed by three height size of 0.25 ja, 0.27 ja and 0.30 ja, (4) It is estimated that the section plan was designed by the order as follows. Firstly, the horizontal position of purlins wes decided on the basis of the intersection point of long and short rafters, and then the position and the section size of purlins and jangheyo(長舌) wes decided on the basis of the slope of roof and rafters. Secondly, going down from purlins, the members of structure composed of 'jae' and 'gyoe' was repeated. Lastly, for the purpose of linking the structure members located on the center line of adjacent purlins organically, the height of whaban(화반) was controlled.

  • PDF

A Study on the Structural Methods between Purlin and Beam at Wooden Architecture in Joseon Dynasty (조선시대 목조건축 도리와 보의 결구방법에 관한 연구)

  • Jung, Yun-Sang
    • Journal of architectural history
    • /
    • v.16 no.6
    • /
    • pp.87-100
    • /
    • 2007
  • This study examines on the structural Methods between purlin and beam at Wooden Architecture in Joseon Dynasty($1372{\sim}1910$). Through the investigation, it is verified that the structural methods between purlin and beam is the technique utilizing tenon joint(통장부맞춤), Sungeoteok joint(숭어턱맞춤), dovetailed tenon joint(주먹장맞춤). And the methods of tenon joint is followed by the Sungeoteok joint, which is used in the buildings after middle Joseon dynasty. The method of tenon joint(통장부맞춤) is to connect the beam with the purlin by carving out the head of the beam as '一' shape. And the structural methods between Janghyeo(장혀, timber under purlin) and beam is halved joint(반턱맞춤) and tenon joint (통장부맞춤). The buildings in late Goryeo Dynasty and Joseon Dynasty adopted the method of tenon joint between purlin and beam. The method of Sungeoteok joint is to connect the beam with the purlins by carving out the head of the beams '凸' shape. And the structural methods between Janghyeo and beams is halved joint(반턱맞춤) and tenon joint(통장부맞춤), the method of tenon and step joint(통장부턱맞춤), dovetailed joint between beam and Janghyeo to increase the security of shear force.

  • PDF

Determination of structural performance of 3D steel pipe rack suspended scaffolding systems

  • Arslan, Guray;Sevim, Baris;Bekiroglu, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.671-681
    • /
    • 2017
  • This study investigates the structural performance of 3D steel pipe rack suspended scaffolding systems. For the purpose, a standard full scale 3D steel pipe rack suspended scaffolding system considering two frames, two plane trusses, purlins and wooden floor is constructed in the laboratory. A developed load transmission system was placed in these experimental systems to distribute single loads to the center of a specific area in a step-by-step manner using a load jack. After each load increment, the displacements are measured by means of linear variable differential transducers placed in several critical points of the system. The tests are repeated for five different system conditions to determine the structural performance. The means of system conditions is the numbers of the tie bars which are used to connect plane trusses under level. Finite elements models of the 3D steel pipe rack suspended scaffolding systems considering different systems conditions are constituted using SAP2000 software to support the experimental tests and to use the models in future studies. Each of models including load transmission platform is analyzed under a single loading and the displacements are obtained. In addition, to calibrate the numerical models some uncertain parameters such as elasticity modulus of wooden floor and connection rigidity of purlins to plane trusses are assessed experimentally. The results of this work demonstrate that when increasing numbers of tie bars the displacement values are decreased. Also the results obtained from developed numerical models have harmony with those of experimental. In addition, the scaffolding system with two tie bars at the beginning and at the end of the plane truss has the optimum structural performance compared the results obtained for other scaffolding system conditions.

A Study on the Joint and Splice of wooden Structure at Geunjeongjeon Hall of Gyeongbok Palace in the late Joseon Dynasty (조선후기 경복궁 근정전 주요 구조재의 맞춤과 이음에 관한 연구)

  • Jung, Yun-Sang
    • Journal of architectural history
    • /
    • v.16 no.1
    • /
    • pp.83-99
    • /
    • 2007
  • This study examines the joint and splice of wooden structure at Geunjeongjeon Hall of Gyengbok Palace, which was constructed in the late Joseon Dynasty. The scope of the study is on the part of columns, the bracket sets, and the frame structure. This research also deals with the relationship between vortical load and horizontal load. Firstly, the examination of the joint and splice methods between the pillar and penetrating ties is on the joint and splice methods of the outer and corner. Through the investigation, it is verified that the joint methods between pillar and penetrating tie on the outer and corner pillars is the method of Sagal joints(cross joints, 사개맞춤). Joints used between pillar and penetrating tie are dovetailed tenon joints, between columns and Anchogong(안초공), between columns and Choikgong(초익공) are tenon joint(장부맞춤). Secondly, the examination of the joint and splice methods of the bracket set is on that of Salmi and Cheomcha(첨차), and Salmi and Janghyeo(장혀). Joints used between Salmi and Cheomcha, Salmi and Janghyeo are halved joint, and between each Janghyeo are stepped dovetailed splice. It is Cheomcha that is used the Jujang-Cheomcha(주장첨차) on center line. Therefore it is connected with each bracket set, which gets to is the strong system, easy and convenient on the construction of that. Thirdly, the frame structure of wooden architecture in royal palace is consist of purlins and beams, Janghyeo(장혀, timber under purlin), tall columns, king posts, etc. Through the investigation, it is verified that the joint and splice methods between purlins and beams are used with the methods of Sungeoteok joint(숭어턱맞춤). It is verified that the joint and splice methods between beams and high columns are used with methods of mortise and tenon joint(장부맞춤), is highly related with tensile force. To reduce the separation of parts, sangi(산지) and tishoi(띠쇠) are used as a counterproposal, which were generally used for architecture in royal Palaces in the late Joseon Dynasty and continued to be used until these days common wooden architecture.

  • PDF

A Study on the Type and Spread of Framed Structure of Gable Roof Meeting at Right Angle in the early Joseon Dynasty (조선전기 맞배직교형 건축의 유형과 전파)

  • Kim, Bue-Dyel;Lee, Jong-Seo
    • Journal of architectural history
    • /
    • v.27 no.2
    • /
    • pp.39-50
    • /
    • 2018
  • This study investigates the types and spread of framed structures of gable roofs meeting at right angle showed in old architecture and documentary paintings of houses, which were well liked in the early Joseon Dynasty. The conclusions of this study were as follows. First, the framed structure of gable roof meeting at right angle can be divided or recognized in 4 types according to their structure's size and purlin's position. Three of those types were noted to be in Seoul. Second, the framed structure of gable roofs meeting at right angle begun from the awareness of their independence from one another. Each space was divided based on their functions. Therefore, it could be extended in various forms, not only in the square plan physique but also in many different forms. And allowed free plan configuration regardless of column layouts or size of structure. Third, 5 purlins and 3 purlins crossing structure were preferred in Han-yang, the early Joseon Dynasty. It is related to the specific construction conditions of urban houses, such as the slope of land, limited land area, and economic power. Fourth, urban housing techniques were diffused throughout the country by officials who lived in Kae-gyeong and Han-yang at the end of Goryeo and early Joseon Dynasty. In other regions, framed structure of gable roof meeting at right angle households decreased, but in some regions of Gyeongsang-province, framed structure of gable roof meeting at right angle has maintained with Staggered purlin.