• Title/Summary/Keyword: purified peptide

Search Result 381, Processing Time 0.023 seconds

Characterization of an Endoxylanase Produced by an Isolated Strain of Bacillus sp.

  • Lee, Jay-J.;Hahm, Kyoung-Soo;Lee, Ki-Young;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.114-120
    • /
    • 1997
  • Microorganisms producing xylanase were screened for the enzymatic production of xylo-oligo saccharides from xylan. One of the bacteria isolated from compost produced an endoxylanase extracellularly. The bacterium was identified as Bacillus sp. according to its taxonomic characteristics examined. Xylanase production reached upto 5 U/ml after 22 h of culture in LB medium at $30^{\circ}C$. The xylanase was purified by ammonium sulfate precipitation and gel filtration. The molecular weight of the xylanase was estimated to be 20,400 by SDS-PAGE. Optimal temperature and pH for the xylanase activity was $60^{\circ}C$ and 6.5, respectively. The enzyme was stable at temperatures upto $40^{\circ}C$ and pH values from 4 to 10. The xylanase was completely inhibited by the addition of 2 mM mercury ion. Apparent $K_m$ and $V_max$ values for oat spelt xylan were 9.2 mg/ml and 1954 U/mg protein, respectively. For birchwood xylan, the values were 6.3 mg/ml and 1009 U/mg protein. The predominant products of the xylan hydrolysis were xylobiose, xylotriose and xylotetraose, indicating that the enzyme is an endoxylanase. Upto $85{\%}$ of the initially added enzyme (2 U/ml) was bound to 50 mg/ml of the insoluble fraction of oat spelt xylan after incubation at $30^{\circ}C$ for 30 min.

  • PDF

Peptide Inhibitors for Angiotensin I Converting Enzyme from Corn Gluten Digests. (옥수수 글루텐 효소 가수분해물의 Angiotensin I Converting Enzyme 활성 저해 펩타이드의 정제)

  • 오광석;이동건;홍정운;성하진
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The angiotensin I converting enzyme (ACE) has an important role in the maintenance of blood pressure. The ACE inhibitory activities of foods have recently been studied. We tried to isolate ACE inhibitory peptides from the Flavourzyme (FZ), Pescalase (PE), and Thermolysine (TH) protease digests of corn gluten, which was restricted to the use the source of food for digestion problem. The FZ, PE, TH/PE protease hydrolyzed corn gluten and the inhibitory activities of the hydrolyzates for ACE were measured. Major fractions were isolated from the digests using ODS chromatography after treating with ethanol in step gradient. The ACE inhibitors were further purified by Bio-Gel P-2 column and reverse phase HPLC. Five inhibitory peptides were isolated. Their amino acids were sequenced as LPF ($IC_{50}$ = 40$\mu$M), GPP ($IC_{50}$ = 17.6$\mu$M), PNPY ($IC_{50}$ = 30.7$\mu$M), SPPPFYL ($IC_{50}$ = 63 $\mu$M), and SQPP ($IC_{50}$ = 17.2$\mu$M).

Developmental Changes of Proteolvtic Activities of 26S Protease Complex and 20S Proteasome in Chick Embryonic Muscle (계배 근조직 발달과정에서의 26S 단백질 분해효소 복합체 및 20S proteasome의 단백질 분해활성의 변화)

  • 이도희;심규석
    • The Korean Journal of Zoology
    • /
    • v.37 no.3
    • /
    • pp.324-330
    • /
    • 1994
  • The multicatalvtic 205 proteasome consisting of 12-15 subunits of 22-35 kDa is the catalytic core of the ATP/ubiquitin-dependent 26S protease complex that also is comprised of multiple subunits of 22-110 KDa. In order to determine whether the proteolvtic activities change during muscle development, the enzyme preparations were obtained from 11-, 14- and 17-day old chick embryonic muscle using a BioGel A-1.5m column. The 26S complex preparation from 14- or 17-day old muscle hvdr olvz e d both N -s uccinvl- Le u- Le u -Val-Tvr-7- amido -4- methvlco umarin ( Suc- LLVY- AMC) and ubiquitin-Ivsozvme conjugates about 50% as well as that from 11-day old muscle. In addition, the activity of 20S proteBsome against Suc-LLVY-AMC also decreased by about 20-30%. However, the protein level of 265 complex remained constant during the entire development period, while that of 205 proteasome increased 5- to 6-fold, as analyzed by nondenaturins polyacrvlamide gel elenrophoresis followed by immunoblot analysis using the antibodies raised against the purified enzymes. Thus, the specific activity of 20S proteasome against the peptide must decrease rather dramatically during the muscle development. These results suggest that the development-dependent changes in the proteolytic activities of both 20S proteasome and 26S protease complect from embryonic muscle are due to alterations in the expression of certain subunits in the enzvmes that are responsible for their specific cataIVtic functions but not to overall changes in the enzyme amounts.

  • PDF

Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp. -I. Purification of Protease from the Hepatopancreas of Penaeus japonicus-

  • Choi Sung-Mi;Oh Eun-Sil;Kim Doo-Sang;Pyeun Jae-Hyeung;Cho Deuk-Moon;Ahn Chang-Bum;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.201-208
    • /
    • 1998
  • A protease, which had no tryptic and chymotryptic activity, was purified from the hepatopancreas of shrimp, P. japonicus, through ammonium sulfate fractionation, Q­Sepharose ionic exchange, benzamidine Sepharose 6B affinity, and Sephacryl S-100 gel chromatography. Molecular weight (M.W.) of the protease was estimated to be 24 kDa by gel filtration and showed a single peptide band by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The protease had a low ratio of acidic to basic amino acids, which is different with pro teases from marine animals. The enzyme was partially inhibited by benzamidine, tosyl-L-lysine chioromethyl ketone (TLCK), phenylmethylsulfonyl fluoride (PMSF), soybean trypsin inhibitor (SBTI), and pepstatin. The enzyme did not have any activity against benzoyl-D,L-arginine p-nitroanilide (BAPNA) or benzoyl-L-tyrosine ethyl ester (BTEE) which is a specific substrate of trypsin and chymotrypsin, respectively. However, the enzyme showed activity forward N-CBZ-L-tyrosine p-nitrophenyl ester (CBZ-Tyr-pNE), N­CBZ-L-tryptophan p-nitrophenyl ester (CBZ-Trp-pNE), and N-CBZ-L-proline p-nitrophenyl ester (CBZ-Pro-pNE). The protease did not showed tryptic and chymotryptic activity, which was not reported in shrimp hepatopancreas.

  • PDF

CND41, a DNA-binding protein in chloroplast nucleoid, and its function

  • Sato, Fumihiko;Murakami, Shinya;Chatani, Hiroshi;Nakano, Takeshi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.51-56
    • /
    • 1999
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed.

  • PDF

Characterization of a Novel Alkaline Family VIII Esterase with S-Enantiomer Preference from a Compost Metagenomic Library

  • Lee, Hyun Woo;Jung, Won Kyeong;Kim, Yong Ho;Ryu, Bum Han;Kim, T. Doohun;Kim, Jungho;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.315-325
    • /
    • 2016
  • A novel esterase gene, est7K, was isolated from a compost metagenomic library. The gene encoded a protein of 411 amino acids and the molecular mass of the Est7K was estimated to be 44,969 Da with no signal peptide. Est7K showed the highest identity of 57% to EstA3, which is an esterase from a drinking water metagenome, when compared with the enzymes with reported properties. Est7K had three motifs, SMTK, YSV, and WGG, which correspond to the typical motifs of family VIII esterases, SxxK, Yxx, and WGG, respectively. Est7K did not have the GxSxG motif in most lipolytic enzymes. Three additional motifs, LxxxPGxxW, PLGMxDTxF, and GGxG, were found to be conserved in family VIII enzymes. The results of the phylogenetic analysis and the alignment study suggest that family VIII enzymes could be classified into two subfamilies, VIII.1 and VIII.2. The purified Est7K was optimally active at 40ºC and pH 10.0. It was activated to exhibit a 2.1-fold higher activity by the presence of 30% methanol. It preferred short-length p-nitrophenyl esters, particularly p-nitrophenyl butyrate, and efficiently hydrolyzed glyceryl tributyrate. It did not hydrolyze β-lactamase substrates, tertiary alcohol esters, glyceryl trioleate, fish oil, and olive oil. Est7K preferred an S-enantiomer, such as (S)-methyl-3-hydroxy-2-methylpropionate, as the substrate. The tolerance to methanol and the substrate specificity may provide potential advantage in the use of the enzyme in pharmaceutical and other biotechnological processes.

A Cold-Adapted Carbohydrate Esterase from the Oil-Degrading Marine Bacterium Microbulbifer thermotolerans DAU221: Gene Cloning, Purification, and Characterization

  • Lee, Yong-Suk;Heo, Jae Bok;Lee, Je-Hoon;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.925-935
    • /
    • 2014
  • A cold-adapted carbohydrate esterase, CEST, belonging to the carbohydrate esterase family 6, was cloned from Microbulbifer thermotolerans DAU221. CEST was composed of 307 amino acids with the first 22 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the mature enzyme were 31,244 Da and pH 5.89, respectively. The catalytic triad consisted of residues Ser37, Glu192, and His281 in the conserved regions: GQSNMXG, QGEX(D/N), and DXXH. The three-dimensional structure of CEST revealed that CEST belongs to the ${\alpha}/{\beta}$-class of protein consisted of a central six-stranded ${\beta}$-sheet flanked by eight ${\alpha}$-helices. The recombinant CEST was purified by His-tag affinity chromatography and the characterization showed its optimal temperature and pH were $15^{\circ}C$ and 8.0, respectively. Specifically, CEST maintained up to 70% of its enzyme activity when preincubated at $50^{\circ}C$ or $60^{\circ}C$ for 6 h, and 89% of its enzyme activity when preincubated at $70^{\circ}C$ for 1 h. The results suggest CEST belongs to group 3 of the cold-adapted enzymes. The enzyme activity was increased by $Na^+$ and $Mg^{2+}$ ions but was strongly inhibited by $Cu^+$ and $Hg^{2+}$ ions, at all ion concentrations. Using p-nitrophenyl acetate as a substrate, the enzyme had a $K_m$ of 0.278 mM and a $k_{cat}$ of $1.9s^{-1}$. Site-directed mutagenesis indicated that the catalytic triad (Ser37, Glu192, and His281) and Asp278 were essential for the enzyme activity.

Production and Purification of Single Chain Human Insulin Precursors with Various Fusion Peptides

  • Cho, Chung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • For the production and purification of a single chain human insulin precursor, four types of fusion peptides $\beta$-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)(sub)6-tagged sequence (HTS) were investigated. Recombinant E. coli harboring hybrid genes was cultivated at 37$\^{C}$ for 1h, and gene induction occurred when 0.2mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except for E. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0mM IPTG, followed by a longer than 4h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique.

  • PDF

Purification and Characterization of Carboxypeptidase B from Wild Salmon (Salmo Salar) Eggs (연어알중의 Carboxypeptidase B 분리정제 및 그 특성에 관한 연구)

  • Jae Woong Kim;Tae Jin Min
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.295-303
    • /
    • 1985
  • Carboxypeptidase B from Salmo Salar eggs was purified by CM-cellulose, 0.5 ammonium sulfate saturation, DEAE-cellulose, and Sephadex G-75 gel filtration and its enzymatic properties were investigated. Optimum temperature was 55$^{\circ}C$, pH optima were 4.0 and 7.0 at 37$^{\circ}C$, and the enzyme was stable at pH 2.0∼3.0 and 5.5∼7.0 for 1.5h. This enzyme showed substrate specificity hydrolyzing the peptide bond of glycyl-L-arginine. Its K$_m$ values was 0.21mM, and the enzyme activity was stimulated by Cu$^{2+}$ and Fe$^{3+}$, while inhibited by Zn$^{2+}$. The lysine was found to be competitive inhibitor and its K$_i$ value was determined to be 4.3mM. Molecular weight of this enzyme was determined to be 36,400 daltons by SDS-PAGE and the enzyme was monomeric protein composed of 19 kinds of amino acid residues.

  • PDF

Production and Characterization of Monoclonal Antibodies to Glutamate Dehydrogenase from Thermophile Sulfolobus solfataricus

  • Cho, Sung-Woo;Ahn, Jee-Yin;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Park, Jin-Seu;Lee, Kil-Soo;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.587-594
    • /
    • 2000
  • Monoclonal antibodies against glutamate dehydrogenase (GDH) from Sulfolobus solfataricus were produced and characterized using epitope mapping and biosensor technology, Five monoclonal antibodies raised against S. solfataricus GDH were each identified as a single protein band that comigrated with purified S. solfataricus GDH on the SDS-polyacrylamide gel electrophoresis and immunoblot. Epitope mapping analysis showed that only one subgroup among the antibodies tested recognized the same peptide fragments of GDH. Using the anti-S. solfataricus GDH antibodies as probes, the cross-reactivities of GDHs from various sources were investigated and it was found that the mammalian GDH is not immunologically related to S. solfataricus GDH. The structural differences between the microbial and mammalian GDHs were further investigated using biosensor technology (Pharmacia BIAcore) and monoclonal antibodies against S. solfataricus and bovine brain. The binding affinity of S. solfataricus glutamate dehydrogenase anti-S. solfataricus for GDH ($K_D$=11 nM) was much tighter than that of anti-bovine for GDH ($K_D$=450 nM). These results, together with the epitope mapping analysis, suggest that there may be structural differences between the two GDH species, in addition to their different biochemical properties.

  • PDF