Browse > Article
http://dx.doi.org/10.4014/jmb.1509.09081

Characterization of a Novel Alkaline Family VIII Esterase with S-Enantiomer Preference from a Compost Metagenomic Library  

Lee, Hyun Woo (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University)
Jung, Won Kyeong (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University)
Kim, Yong Ho (Department of Agricultural Chemistry, Sunchon National University)
Ryu, Bum Han (Department of Chemistry, Sookmyung Women's University)
Kim, T. Doohun (Department of Chemistry, Sookmyung Women's University)
Kim, Jungho (Department of Agricultural Chemistry, Sunchon National University)
Kim, Hoon (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.2, 2016 , pp. 315-325 More about this Journal
Abstract
A novel esterase gene, est7K, was isolated from a compost metagenomic library. The gene encoded a protein of 411 amino acids and the molecular mass of the Est7K was estimated to be 44,969 Da with no signal peptide. Est7K showed the highest identity of 57% to EstA3, which is an esterase from a drinking water metagenome, when compared with the enzymes with reported properties. Est7K had three motifs, SMTK, YSV, and WGG, which correspond to the typical motifs of family VIII esterases, SxxK, Yxx, and WGG, respectively. Est7K did not have the GxSxG motif in most lipolytic enzymes. Three additional motifs, LxxxPGxxW, PLGMxDTxF, and GGxG, were found to be conserved in family VIII enzymes. The results of the phylogenetic analysis and the alignment study suggest that family VIII enzymes could be classified into two subfamilies, VIII.1 and VIII.2. The purified Est7K was optimally active at 40ºC and pH 10.0. It was activated to exhibit a 2.1-fold higher activity by the presence of 30% methanol. It preferred short-length p-nitrophenyl esters, particularly p-nitrophenyl butyrate, and efficiently hydrolyzed glyceryl tributyrate. It did not hydrolyze β-lactamase substrates, tertiary alcohol esters, glyceryl trioleate, fish oil, and olive oil. Est7K preferred an S-enantiomer, such as (S)-methyl-3-hydroxy-2-methylpropionate, as the substrate. The tolerance to methanol and the substrate specificity may provide potential advantage in the use of the enzyme in pharmaceutical and other biotechnological processes.
Keywords
Compost metagenomic library; enantioselectivity; family VIII esterase; methanol activation; short-length p-nitrophenyl esters;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Schmeisser C, Steele H, Streit WR. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75: 955-962.   DOI
2 Schütte M, Fetzner S. 2007. EstA from Arthrobacter nitroguajacolicus Rü61a, a thermo- and solvent-tolerant carboxylesterase related class C β-lactamases. Curr. Microbiol. 54: 230-236.   DOI
3 Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI
4 Selvin J, Kennedy J, Lejon DP, Kiran GS, Dobson AD. 2012. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb. Cell Fact. 11: 72.   DOI
5 Shin ES, Yang MJ, Jung KH, Kwon EJ, Jung JS, Park SK, et al. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68: 3496-3501.   DOI
6 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
7 Tiquia SM. 2002. Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol. 92: 764-775.   DOI
8 Wagner UG, Petersen EI, Schwab H, Kratky C. 2002. EstB from Burkholderia gladioli: a novel esterase with a β-lactamase fold reveals steric factors to discriminate between esterolytic and β-lactam cleaving activity. Protein Sci. 11: 467-478.   DOI
9 Yu EY, Kwon MA, Lee M, Oh JY, Choi JE, Lee JY, et al. 2011. Isolation and characterization of cold-active family VIII esterases from an arctic soil metagenome. Appl. Microbiol. Biotechnol. 90: 573-581.   DOI
10 Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183.   DOI
11 Berger R, Hoffmann M, Keller U. 1998. Molecular analysis of a gene encoding a cell-bound esterase from Streptomyces chrysomallus. J. Bacteriol. 180: 6396-6399.
12 Biver S, Vandenbol M. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200.   DOI
13 Henke E, Bornscheuer UT, Schmid RD, Pleiss J. 2003. A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chembiochem 4: 485-493.   DOI
14 Bornscheuer UT. 2002. Microbial carboxylesterase: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26: 73-81.   DOI
15 Cha SS, An YJ, Jeong CS, Kim MK, Jeon JH, Lee CM, et al. 2013. Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase. Proteins 81: 2045-2051.   DOI
16 Charbonneau DM, Beauregard M. 2013. Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme family XV. PLoS One 8: e76675.   DOI
17 Cheng X, Wang X, Qiu T, Yuan M, Sun J, Gao J. 2014. Molecular cloning and characterization of a novel cold-adapted family VIII esterase from a biogas slurry metagenomic library. J. Microbiol. Biotechnol. 24: 1484-1489.   DOI
18 Cho KM, Lee SM, Math RK, Islam SM, Kambiranda DM, Kim JM, et al. 2008. Culture-independent analysis of microbial succession during composting of swine slurry and mushroom cultural wastes. J. Microbiol. Biotechnol. 18: 1874-1883.
19 Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, et al. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645.   DOI
20 Jaeger KE, Dijkstra BW, Reetz MT. 1999. Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351.   DOI
21 Jagger KE, Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397.   DOI
22 Kim YS, Lee HB, Choi KD, Park S, Yoo OJ. 1994. Cloning of Pseudomonas fluorescens carboxylesterase gene and characterization of its product expressed in Escherichia coli. Biosci. Biotechnol. Biochem. 58: 111-116.   DOI
23 Jeon JH, Kim SJ, Lee HS, Cha SS, Lee JH, Yoon SH, et al. 2011. Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics. Appl. Environ. Microbiol. 77: 7830-7836.   DOI
24 Kim HJ, Jung WK, Lee HW, Yoo W, Kim TD, Kim H. 2015. Characterization of an alkaline family I.4 lipase from Bacillus sp. W130-35 isolated from a tidal mud flat with broad substrate specificity. J. Microbiol. Biotechnol. DOI: 10.4014/jmb.1507.07104 [In Press].   DOI
25 Kim YH, Kwon EJ, Kim SK, Jeong YS, Kim J, Yun HD, Kim H. 2010. Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem. Biophys. Res. Commun. 393: 45-49.   DOI
26 McKay DB, Jennings MP, Godfrey EA, MacRae IC, Rogers PJ, Beacham IR. 1992. Molecular analysis of an esterase-encoding gene from a lipolytic psychrotrophic pseudomonad. J. Gen. Microbiol. 138: 701-708.   DOI
27 Kim YO, Park IS, Nam BH, Kim DG, Jee YJ, Lee SJ, An CM. 2014. A novel esterase from Paenibacillus sp. PBS-2 is a new member of the β-lactamase belonging to the family VIII lipases/esterases. J. Microbiol. Biotechnol. 24: 1260-1268.   DOI
28 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
29 Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
30 Mokoena N, Mathiba K, Tsekoa T, Steenkamp P, Rashamuse K. 2013. Functional characterisation of a metagenome derived family VIII esterase with a deacetylation activity on β-lactam antibiotics. Biochem. Biophys. Res. Commun. 437: 342-348.   DOI
31 Na HB, Jung WK, Jeong YS, Kim HJ, Kim SK, Kim J, et al. 2015. Characterization of a GH family 8 b-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655.   DOI
32 Nicholas KB, Nicholas Jr HB. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the authors.
33 Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R. 2011. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol. Ecol. 78: 188-201.   DOI
34 Ogino H, Mimitsuka T, Muto T, Matsumura M, Yasuda M, Ishimi K, Ishikawa H. 2004. Cloning, expression, and characterization of a lipolytic enzyme gene (lip8) from Pseudomonas aeruginosa LST-03. J. Mol. Microbiol. Biotechnol. 7: 212-223.   DOI
35 Ngo TD, Ryu BH, Ju H, Jang EJ, Kim KK, Kim TD. 2014. Crystallographic analysis and biochemical applications of a novel penicillin-binding protein/β-lactamase homologue from a metagenomic library. Acta Crystallogr. D Biol. Crystallogr. 70: 2455-2466.   DOI
36 Nishizawa M, Shimizu M, Ohkawa H, Kanaoka M. 1995. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl. Environ. Microbiol. 61: 3208-3215.
37 Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, et al. 1992. The alpha/beta hydrolase fold. Protein Eng. 5: 197-211.   DOI
38 Ouyang LM, Liu JY, Qiao M, Xu JH. 2013. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Biochem. Biotechnol. 169: 15-28.   DOI
39 Pérez D, Kovacic F, Wilhelm S, Jaeger KE, García MT, Ventosa A, Mellado E. 2012. Identification of amino acids involved in the hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology 158: 2192-2203.   DOI
40 Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, et al. 2011. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6: e23325.   DOI
41 Rashamuse KJ, Burton SG, Stafford WH, Cowan DA. 2007. Molecular characterization of a novel family VIII esterase from Burkholderia multivorans UWC10. J. Mol. Microbiol. Biotechnol. 13: 181-188.   DOI
42 Petersen EI, Valinger G, Solkner B, Stubenrauch G, Schwab H. 2001. A novel esterase from Burkholderia gladioli shows high deacetylation activity on cephalosporins is related to β-lactamases and DD-peptidases. J. Biotechnol. 89: 11-25.   DOI
43 Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011 SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI
44 Ranjan R, Grover A, Kapardar RK, Sharma R. 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Biophys. Res. Commun. 335: 57-65.   DOI
45 Rashamuse K, Magomani V, Ronneburg T, Brady D. 2009. A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous β-lactamase activity on nitrocefin. Appl. Microbiol. Biotechnol. 83: 491-500.   DOI
46 Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, et al. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547.   DOI
47 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.