• Title/Summary/Keyword: pure state

Search Result 549, Processing Time 0.029 seconds

Calibrated Parameters with Consistency for Option Pricing in the Two-state Regime Switching Black-Scholes Model (국면전환 블랙-숄즈 모형에서 정합성을 가진 모수의 추정)

  • Han, Gyu-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Among a variety of asset dynamics models in order to explain the common properties of financial underlying assets, parametric models are meaningful when their parameters are set reliably. There are two main methods from which we can obtain them. They are to use time-series data of an underlying price or the market option prices of the underlying at one time. Based on the Girsanov theorem, in the pure diffusion models, the parameters calibrated from the option prices should be partially equivalent to those from time-series underling prices. We call this phenomenon model consistency. In this paper, we verify that the two-state regime switching Black-Scholes model is superior in the sense of model consistency, comparing with two popular conventional models, the Black-Scholes model and Heston model.

Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

  • Lim, Ji-Eun;Ahn, Sang Hyun;Jang, Jong Hyun;Park, Hansoo;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2019-2024
    • /
    • 2014
  • NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni59Cu41 had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

Steady State Respknse of a Rotor Supported on Cavitated Squeeze Film Dampers (공동 스퀴즈 필름 댐퍼에 지지된 회전체의 정상상태 응답 해석)

  • 정시영;정재천;심상규
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.213-222
    • /
    • 1992
  • The effect of cavitation on the synchronous steady state response of a single rotor supported on cavitated squeeze film dampers executing a circular orbit is investigated theoretically. The Swift-Stieber boundary conditions and a long bearing approximation are utillized to evaluate the direct and the cross coupled damping coefficients of a cavitated squeeze film damper. For typical design parameters, frequency response curves are presented here to exhibit the effect of cavitation on the imbalance response and transmissibilities for both a flexible rotor and a rigid rotor. Investigations show that cavitation occured in a squeeze film damper produces bistable jump phenomena and deteriorates the performance of a squeeze film damper. This arises from that the large cavity causes substantial increment of the cross coupled damping which has radial stiffening effect. Furthermore, the large cavity causes the decrement of the direct damping which has pure damping effect. It is also observed that in the absence of cavitation, both rotor excursion amplitude and imbalance transmissibilities are very well damped.

  • PDF

Effect of the thickness on the mixed mode crack front fields

  • Khan, Shafique M.A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.701-713
    • /
    • 2012
  • Results pertaining to 3D investigations on the effect of the thickness on the stress fields at the crack front are presented. A 3D finite element analysis is performed using a modified single edge-notched tension specimen configuration, with an inclined crack to include mixed mode I-II. A technique to mesh the crack front (3D) with singular finite elements in ANSYS without using third party software is introduced and used in this study. The effect of the specimen thickness is explicitly investigated for six thicknesses ranging from 1 to 32 mm. In addition, three crack inclination angles, including pure Mode-I, are used to study the effect of mixed-mode I-II fracture. An attempt is made to correlate the extent of a particular stress state along the crack front to thickness. In addition, ${\sigma}_{zz}/{\nu}({\sigma}_{xx}+{\sigma}_{yy})$ contours at the crack front are presented as a useful means to analyze the stress state.

Production, Isolation, and Purification of L-Asparaginase from Pseudomonas Aeruginosa 50071 Using Solid-state Fermentation

  • El-Bessoumy, Ashraf A.;Sarhan, Mohamed;Mansour, Jehan
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.387-393
    • /
    • 2004
  • The L-asparaginase (E. C. 3. 5. 1. 1) enzyme was purified to homogeneity from Pseudomonas aeruginosa 50071 cells that were grown on solid-state fermentation. Different purification steps (including ammonium sulfate fractionation followed by separation on Sephadex G-100 gel filtration and CM-Sephadex C50) were applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified 106-fold and showed a final specific activity of 1900 IU/mg with a 43% yield. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme revealed it was one peptide chain with $M_r$ of 160 kDa. A Lineweaver-Burk analysis showed a $K_m$ value of 0.147 mM and $V_{max}$ of 35.7 IU. The enzyme showed maximum activity at pH 9 when incubated at $37^{\circ}C$ for 30 min. The amino acid composition of the purified enzyme was also determined.

STIMULATING NEURAL ELECTRODE-A STUDY ON CHARGE INJECTION PROPERTIES OF IRIDIUM OXIDE FILMS

  • Lee, In-Seop;Ray A. Buchanan;Jim M.Williams
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.156-162
    • /
    • 1995
  • For a stimulating neural electrode, the charge density should be as large as possible to provide adequate stimulation of the nervous system while allowing for miniaturization of the electrode. Since iridium oxide is able to produce high charge densities while preventing undesirable reactions due to charge storage, it has become a promising material for neural prostheses. Successful production of stable Ir and Ir oxide films on various substrates now limits the use of this material. Ir was deposited on two differently prepared surface of (mirror finish, passivation) surgical Ti-6AI-4V with several methods. Ion beam mixing of sputter deposited Ir films on passivated Ti-6AI-4V produced stable and good adherent Ir films. It was found that the increase in charge density of pure Ir on continuous cyclingis due to the accumulation of the oxide phase ( associated with a large surface area) in which the valence state of iridium changes and the double-layer capacitance increases. This study also showed that the double layer capacitance is equally or even more responsible for the high charge density of anodically formed Ir oxide.

  • PDF

A357을 이용한 반응고 상태에서의 브레이징 접합면 분석

  • Choi, B.H.;Kwon, Y.H.;Lee, S.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.485-487
    • /
    • 2008
  • Aluminum brazing needs normally careful control of temperatures due to little difference between brazing temperatures and melting temperatures of base materials. Unsuitable processing conditions such as brazing temperature, gap between brazed materials, inadequate feeding of flux, etc. can lead to occur joining defects. In this study, A357 was used as a filler metal for the brazing of pure aluminum base materials. A357 was brazed at temperatures in the semi-solid state. Interface microstructures with base materials were observed using OM and SEM/EDS and compared to conventional aluminum brazing.

  • PDF

Solid State Sintering of Calcium Phosphate Ceramic Composites and Their Cellular Response

  • Cho, Yeong-Cheol;Kong, Young-Min;Riu, Doh-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.691-695
    • /
    • 2012
  • Calcium phosphate ceramic composites, consisting of hydroxyapatite(HA) and tricalcium phosphate (TCP), were fabricated by solid state sintering in order to investigate the effect of their initial compositions on microstructural evolutions and biocompatibility. All the sintered calcium phosphate ceramics exhibited almost full densification, while the grain growth of the composites increased with an increasing TCP content in the green body. The TCP phase transformed into a Ca-deficient HA phase during sintering via the diffusion of calcium ions from the HA phase into the TCP phase. The phases formed in the composites significantly affected the biocompatibility of the composites. The HA-matrix ceramic composites with TCP had a better cellular response than the pure HA ceramics, presumably due to the newly formed Ca-deficient HA.

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying;Li, Yan;Xiao, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.769-775
    • /
    • 2019
  • The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF