• Title/Summary/Keyword: pupil-template

Search Result 15, Processing Time 0.027 seconds

A Face Detection using Pupil-Template from Color Base Image (컬러 기반 영상에서 눈동자 템플릿을 이용한 얼굴영상 추출)

  • Choi, Ji-Young;Kim, Mi-Kyung;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.828-831
    • /
    • 2005
  • In this paper we propose a method to detect human faces from color image using pupil-template matching. Face detection is done by three stages. (i)separating skin regions from non-skin regions; (ii)generating a face regions by application of the best-fit ellipse; (iii)detecting face by pupil-template. Detecting skin regions is based on a skin color model. we generate a gray scale image from original image by the skin model. The gray scale image is segmented to separated skin regions from non-skin regions. Face region is generated by application of the best-fit ellipse is computed on the base of moments. Generated face regions are matched by pupil-template. And we detection face.

  • PDF

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

Detection of Pupil using Template Matching Based on Genetic Algorithm in Facial Images (얼굴 영상에서 유전자 알고리즘 기반 형판정합을 이용한 눈동자 검출)

  • Lee, Chan-Hee;Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1429-1436
    • /
    • 2009
  • In this paper, we propose a robust eye detection method using template matching based on genetic algorithm in the single facial image. The previous works for detecting pupil using genetic algorithm had a problem that the detection accuracy is influnced much by the initial population for it's random value. Therefore, their detection result is not consistent. In order to overcome this point we extract local minima in the facial image and generate initial populations using ones that have high fitness with a template. Each chromosome consists of geometrical informations for the template image. Eye position is detected by template matching. Experiment results verify that the proposed eye detection method improve the precision rate and high accuracy in the single facial image.

Pupil Detection using Hybrid Projection Function and Rank Order Filter (Hybrid Projection 함수와 Rank Order 필터를 이용한 눈동자 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we propose a pupil detection method using hybrid projection function and rank order filter. To reduce error to detect eyebrows as pupil, eyebrows are detected using hybrid projection function in face region and eye region is set to not include the eyebrows. In the eye region, potential pupil candidates are detected using rank order filter and then the positions of pupil candidates are corrected. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using template matching, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 700 images of the BioID face database. The pupil detection rate is 92.4% and the proposed method improves about 21.5% over the existing method..

Fake Face Detection System Using Pupil Reflection (동공의 반사특징을 이용한 얼굴위조판별 시스템)

  • Yang, Jae-Jun;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.645-651
    • /
    • 2010
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous liveness detection methods are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new fake image detection method using pupil reflection. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, and uses template matching technique in oreder to increase the detection accuracy in the second stage. The template matching plays a role in determining the allowed eye area. The infrared image that is reflected in the pupil is used to decide whether or not the captured image is fake. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of fake images.

Real-Time Pupil Detection System Using PC Camera (PC 카메라를 이용한 실시간 동공 검출)

  • 조상규;황치규;황재정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1184-1192
    • /
    • 2004
  • A real-time pupil detection system that detects the pupil movement from the real-time video data achieved by the visual light camera for general purpose personal computer is proposed. It is implemented with three steps; at first, face region is detected using the Haar-like feature detection scheme, and then eye region is detected within the face region using the template-based scheme. Finally, pupil movement is detected within the eye region by convolution of the horizontal and vertical histogram profiling and Gaussian filter. As results, we obtained more than 90% of the detection rate from 2375 simulation images and the data processing time is about 160㎳, that detects 7 times per second.

Fake Face Detection and Falsification Detection System Based on Face Recognition (얼굴 인식 기반 위변장 감지 시스템)

  • Kim, Jun Young;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 2015
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous liveness detection and fake face detection methods are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new liveness detection method using pupil reflection, and new fake image detection using Adaboost detector. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, The template matching plays a role in determining the allowed eye area. And then, the reflected image in the pupil is used to decide whether or not the captured image is live or not. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of fake images.

Research on the Change in Index of Pupil in the Initial Observation on Large Space of Library (공간의 초기 주시과정에 나타난 동공지표의 크기변화에 관한 연구)

  • Kim, Jong-Ha
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.15-28
    • /
    • 2018
  • The purpose of this study was to conduct eye-tracking experiments to target large spaces and to analyze the characteristics of pupil gaze by gender. By analyzing the change of pupil size in the eye-tracking experiment, we suggest a template for objective and scientific analyses of gender observation data. Additionally, based on the difference between gender and time to pupil size change, we noted the characteristic of time that gather the visual perception data information and showed that females attend to interesting elements of visual information one to two seconds slower than males. In the initial "$1sec{\rightarrow}2sec$", the pupil size has been increased in leap condition of male and in fixed condition of female. In addition, if condition limits to fixed observation to view the change rates on gender then the pupil size of female was larger than male before 9 seconds, while male's pupil size was larger after 9 seconds. This indicates that females obtain visual information through a relatively larger pupil size during the first 1-8 seconds after stimulus presentation, while males acquire it between 10-15 seconds after input. However, based on the result that the pupil size of female was larger than male on the change of observation time, the pupil size movement on female was energized to watch more interest element after a certain period of time.

Gaze Tracking Using a Modified Starburst Algorithm and Homography Normalization (수정 Starburst 알고리즘과 Homography Normalization을 이용한 시선추적)

  • Cho, Tai-Hoon;Kang, Hyun-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1162-1170
    • /
    • 2014
  • In this paper, an accurate remote gaze tracking method with two cameras is presented using a modified Starburst algorithm and honography normalization. Starburst algorithm, which was originally developed for head-mounted systems, often fails in detecting accurate pupil centers in remote tracking systems with a larger field of view due to lots of noises. A region of interest area for pupil is found using template matching, and then only within this area Starburst algorithm is applied to yield pupil boundary candidate points. These are used in improved RANSAC ellipse fitting to produce the pupil center. For gaze estimation robust to head movement, an improved homography normalization using four LEDs and calibration based on high order polynomials is proposed. Finally, it is shown that accuracy and robustness of the system is improved using two cameras rather than one camera.