• Title/Summary/Keyword: pupil correction

Search Result 16, Processing Time 0.024 seconds

Red-Eye Removal Using an Inpainting Method (인페인팅 기법을 이용한 적목현상 제거)

  • Yoo, Seung-Hwan;Park, Rae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.365-366
    • /
    • 2007
  • In this paper, a novel correction method of red-eye effect is proposed. Conventional methods simply reduce red components in red-eye regions, not considering the expanded size of a pupil, thus the correction results can be unnatural. In the proposed method, an exemplar-based inpainting method is used for reducing the pupil region and filling the iris texture instead. Experimental results show that the proposed method is effective and its correction results look more natural than those of conventional methods.

  • PDF

Pupil plane wavefront sensing with a static pyramidal prism: Simulation and preliminary evaluation

  • Lee, Jun-Ho;Doel, A.P.;Walker, D.D.
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Adaptive optics(AO) removes or compensates the distortion caused by a turbulent atmosphere or medium. A wavefront sensormeasures the distortion, on which the correction of AO is based. A new idea of pupil plane wavefront sensing, which consists of a relay lens and a pyramidal-shaped prism, was previously proposed. This paper reviews the idea of pupil wavefrontsensing and presents prism, was previously proposed. The simulation shows that pupilwavefront sensing provides full wavefront sensing when the intensity peak of PSF is located within half of the Airy radius from the apex of the sensor. Adding to this, the sensor is shown to have optimum sensor output with a finite bevel size of the pyramidal prism.

Iris Localization using the Pupil Center Point based on Deep Learning in RGB Images (RGB 영상에서 딥러닝 기반 동공 중심점을 이용한 홍채 검출)

  • Lee, Tae-Gyun;Yoo, Jang-Hee
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.135-142
    • /
    • 2020
  • In this paper, we describe the iris localization method in RGB images. Most of the iris localization methods are developed for infrared images, thus an iris localization method in RGB images is required for various applications. The proposed method consists of four stages: i) detection of the candidate irises using circular Hough transform (CHT) from an input image, ii) detection of a pupil center based on deep learning, iii) determine the iris using the pupil center, and iv) correction of the iris region. The candidate irises are detected in the order of the number of intersections of the center point candidates after generating the Hough space, and the iris in the candidates is determined based on the detected pupil center. Also, the error due to distortion of the iris shape is corrected by finding a new boundary point based on the detected iris center. In experiments, the proposed method has an improved accuracy about 27.4% compared to the CHT method.

User-Calibration Free Gaze Tracking System Model (사용자 캘리브레이션이 필요 없는 시선 추적 모델 연구)

  • Ko, Eun-Ji;Kim, Myoung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1096-1102
    • /
    • 2014
  • In remote gaze tracking system using infra-red LEDs, calibrating the position of reflected light is essential for computing pupil position in captured images. However, there are limitations in reducing errors because variable locations of head and unknown radius of cornea are involved in the calibration process as constants. This study purposes a gaze tracking method based on pupil-corneal reflection that does not require user-calibration. Our goal is to eliminate the correction process of glint positions, which require a prior calibration, so that the gaze calculation is simplified.

An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

  • Chen, Zhe;Yang, Bingbing;Yin, Fuliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1087-1104
    • /
    • 2015
  • An eye location based head posture recognition method is proposed in this paper. First, face is detected using skin color method, and eyebrow and eye areas are located based on gray gradient in face. Next, pupil circles are determined using edge detection circle method. Finally, head postures are recognized based on eye location information. The proposed method has high recognition precision and is robust for facial expressions and different head postures, and can be used in mouse operation. The experimental results reveal the validity of proposed method.

Changes of Refractive Errors Caused by Corneal Shape and Pupil Size (각막지형과 동공크기에 의한 굴절교정값의 변화)

  • Noh, Yeon Soo;Kim, Sang-Yeob;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.383-387
    • /
    • 2014
  • Purpose: To investigate the effect of corneal unique shape to changes of refractive full corrections when pupil size changes. Methods: Subjective refraction for monocular full correction was performed to 30 subjects ($23.33{\pm}1.78$ of age, 60 eyes) in two room conditions, 760 lx and 2 lx, respectively. Pupillary diameter was measured in two conditions and the change pattern was analyzed using a peak data of corneal topography. Results: Pupillary diameter was 3.74~4.00 mm in 760 lx and 5.52~5.90 mm in 2 lx. By comparison with refractive data in 760 lx, those data in 2 lx was changed as follows: more (-) spherical power of 17 eyes (28.3%), more (+) spherical power of 10 eyes (17.7%), more (-) cylinderical power of 17 eyes (28.8%), less (-) cylinderical power of 9 eyes (15.3%), and astigmatic axis rotation of 36 eyes (62.1%). From peak data of corneal topography, the changing pattern of two principal meridians was classified into 4 types. Conclusions: Expansion of the corneal refractive surface accompanied with pupillary dilation may be a main factor that effects the changing a values of subjective refraction because of unique corneal shape. Therefore, subjective refraction should be performed under the nearest lighting condition to a main living environment.

Simulation of the Through-Focus Modulation Transfer Functions According to the Change of Spherical Aberration in Pseudophakic Eyes

  • Kim, Jae-hyung;Kim, Myoung Joon;Yoon, Geunyoung;Kim, Jae Yong;Tchah, Hungwon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2015
  • To evaluate the effects of spherical aberration (SA) correction on optical quality in pseudophakic eyes, we simulated the optical quality of the human eye by computation of the modulation transfer function (MTF). We reviewed the medical records of patients who underwent cataract surgery in Asan Medical Center, retrospectively. A Zywave aberrometer was used to measure optical aberrations at 1-12 postoperative months in patients with AR40e intraocular lens implants. The MTF was calculated for a 5 mm pupil from measured wavefront aberrations. The area under the MTF curve (aMTF) was analyzed and the maximal aMTF was calculated while changing the SA ($-0.2{\sim}+0.2{\mu}m$) and the defocus (-2.0 ~ +2.0 D). Sixty-four eyes in 51 patients were examined. The maximal aMTF was $6.61{\pm}2.16$ at a defocus of $-0.25{\pm}0.66D$ with innate SA, and $7.64{\pm}2.63$ at a defocus of $0.08{\pm}0.53D$ when the SA was 0 (full correction of SA). With full SA correction, the aMTF increased in 47 eyes (73.4%; Group 1) and decreased in 17 eyes (26.6%; Group 2). There were statistically significant differences in Z(3, -1) (vertical coma; P = 0.01) and Z(4, 4) (tetrafoil; P = 0.04) between the groups. The maximal aMTF was obtained at an SA of $+0.01{\mu}m$ in Group 1 and an SA of $+0.13{\mu}m$ in Group 2. Optical quality can be improved by full correction of SA in most pseudophakic eyes. However, residual SA might provide benefits in eyes with significant radially asymmetric aberrations.

Postoperative Contralateral Blepharoptosis in Patients with Unilateral Blepharoptosis and Negative Hering's Law Dependence Test (헤링씨 법칙 비의존성 단안성 윗눈꺼풀처짐증 환자에서 수술 후 생긴 건측의 눈꺼풀처짐증)

  • Ha, Won Ho;Lee, Yong Jig;Park, David Dae Hwan;Han, Dong Gil;Shim, Jeong Su
    • Archives of Craniofacial Surgery
    • /
    • v.14 no.1
    • /
    • pp.36-40
    • /
    • 2013
  • Background: Correction of unilateral blepharoptosis is unexpectedly difficult because healthy eye is often affected by Hering's law. Methods: We measured changes of marginal reflex distance (MRD1) on the unaffected eyelids between preoperative and 3-month postoperative photographs after ptosis correction. This study analyzed 134 unilateral blepharoptosis patients with ptosis correction from February 2002 to February 2011. Fifty patients among them were negative in Hering's law dependence test. From the preoperative and postoperative photographs the MRD1 of unaffected upper eyelids were measured and adjusted with the average pupil diameter of Koreans. Mean age was 34.4 and male was 30 and female was 20. Average follow-up periods were 14 months. Results: Thirteenth unaffected eyes (26%) showed decreased MRD1, and 3 patients (6%) showed decreased MRD1 value over 1.0 mm. Then 3 patients needed additional operations for correction of preoperatively unaffected but ptotic eyelids. Conclusion: There were no meaningful data statistically in the value of MRD1 in every unaffected eye of the patients and in the difference between preoperative and postoperative MRD1 of groups divided according to severity, causes, and types of operation.

A New Instrument for Measuring the Optical Properties of Wide-field-of-view Virtual-reality Devices

  • Ahn, Hee Kyung;Lim, Hyun Kyoon;Kang, Pilseong
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.392-399
    • /
    • 2022
  • Light-measuring devices (LMDs) are frequently used to measure luminance and color coordinates of displays. However, it is very difficult to use a conventional LMD for measuring the optical properties of virtual-reality (VR) devices with a wide field of view (FOV), because of their confined spaces where the entrance pupil of a LMD is located. In this paper, a new LMD that can measure the optical properties of wide-FOV VR devices, without physical conflict with the goggles of the VR device, is proposed. The LMD is designed to fully satisfy the requirements of IEC 63145-20-10, and a pivot-point correction method for the LMD is applied to improve its accuracy. To show the feasibility of the developed LMD and the correction method, seven VR devices with wide FOV are measured with it. From the results, all of them are successfully measured without any physical conflict, and a comparison to their nominal values shows that the FOVs have been properly measured.

Analysis of Specific Problems in Laser Scanning Optical System Design

  • Joo, Won-Don
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • We analyze aberrations in an optical laser printer system in order to know how to determine an allowable non-uniformity of the movement of a light spot, how to determine allowed variation of spot sizes, and how to minimize the influence of these deviations on technological errors. In this paper, the correction and the tolerance of distortion are analyzed by using the concept of zonal and global distortions. The tolerance of field curvature is also obtained from Gaussian beam properties. In order to reduce the change of the entrance pupil position and to make a more compact laser printer system the minimum size of the rotator is exactly derived from the geometry with the introduction of the shift angle of the input beam.