• 제목/요약/키워드: pumping effect

검색결과 287건 처리시간 0.03초

열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석 (Numerical Analysis on Thermal Transpiration Flows for a Micro Pump)

  • 허중식;이종철;황영규;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.493-496
    • /
    • 2006
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions.

  • PDF

짧은 못형핀의 형상 변화에 따른 열전달 및 마찰손실 특성 (Heat transfer and friction loss characteristics of shaped short pin-fin arrays)

  • 조형희
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.259-267
    • /
    • 1997
  • Average heat transfer coefficients and friction coefficients have been measured from staggered short pin-fin arrays to investigate the effect of fin shapes. Flow entering into the test section is a fully developed duct flow and the Reynolds number ranges from 5,000 to 25,000 based on fin diameter and average approaching velocity. The fin has three different shapes; uniform-diameter circular fin, two stepped-diameter circular fins. Average heat transfer rates change slightly with the fin shapes. However, friction loss(pressure loss) for the stepped-diameter fins is significantly less than that for the uniform-diameter fin. This results indicate that the stepped-diameter fin arrays in duct flow enhance heat transfer rates largely based on unit pumping power.

  • PDF

포항지역 지열수의 수리지구화학적 특성

  • 고동찬;염병우;하규철;송윤호
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.453-454
    • /
    • 2004
  • Hydrogeochemical and isotopic characteristics were investigated for groundwater of Tertiary basin in southeastern part of Korea where deep drilling is in progress for geothermal investigation. According to geology, aquifer was distinguished as alluvial, tertiary sedimentary bedrock (bedrock groundwater), and fractured volcanic rock (deep groundwater). Groundwater of each aquifer is distinctively separated in Eh-pH conditions and concentrations of Cl, F, B and HCO$_3$. Deep groundwater has very low level 3H and 14C whereas alluvial groundwater has those of recent precipitation level. However one of deep groundwater show mixed characteristics in terms of hydrochemistry which indicates effect of pumping. Deep groundwater have temperature of 38 to 43$^{\circ}C$ whereas bedrock and alluvial groundwater have temperature less than 2$0^{\circ}C$. Fractured basement rock aquifer has different hydrogeologicalsetting from bedrock and alluvial aquifer considering hydrogeochemical and isotopic characteristics, and temperature.

  • PDF

한 쌍의 실린더를 가지는 점성구동 마이크로 펌프의 성능 해석 (Performance Analysis of the Viscous-driven Micropump with Tandem Rotating Cylinders)

  • 최형일;조성찬;맹주성
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1256-1261
    • /
    • 2003
  • Since the viscous effect increases as the size of device decreases, viscous-driven micropump is a promising mechanism in microscale applications. In the present study, a dual-rotor type pump which contains two counter-rotating cylinders for improving performance characteristics is proposed. First, for flows in the single-rotor type pump, the present unstructured grid simulation method is validated by comparing its results to the previous results. Next, the performance of the dual-rotor type pump is evaluated by the parametric studies and is compared to that of the previous single-rotor type pump. The flow characteristics are qualitatively similar to those of single-rotor type pump. However, the performance of the micropump with tandem rotors is still better than that of previous pumping type, e.g. much larger flow rate, smaller driving region, higher efficiency, and wider operation range.

탄성관을 삽입한 관로에서의 비정상류에 관한 연구 (Study on Transient Flow in Pipeline with Flexible Tube)

  • 김영준;총본관
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.825-828
    • /
    • 2005
  • Experimental and numerical study was done to confirm the effect of the flexible tube in pipeline on transient flow oscillation. Experiment was made for a pipeline with and without deformable flexible tube using a single pumping system of main stainless pipe. The wave speeds of main pipe and flexible tube were calculated from the pipe material properties, structures, and boundary conditions. Time dependent pressure fluctuations were calculated for the pipeline using the simple and the Kelvin-Voigt viscoelastic models for the deformation of main pipe and flexible tube. Pressure calculated by the Kelvin-Voigt viscoelastic model showed better agreement with measured one than pressure by the simple model. Experimental and numerical results show that the maximum pressure as well as amplitude of pressure oscillation was decreased by inserting short flexible tube in pipeline. Hence, inserted short flexible tube to pipeline was found to be effective for the suppression of strong pressure oscillation. Moreover, the wave speed in pipe was discussed based on numerical and experimental results.

  • PDF

펌프장 정전시 역류발생시간에 관한 연구 (A Study on the Reversal Flow Time due to Blackout)

  • 박종호;박한영
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.26-34
    • /
    • 2011
  • Waterhammer and slamming phenomena can occur when power is cut off due to reversal flow in pipeline and sudden close of check valve. Therefore analysis of reversal flow time, which means the time of reversal flow in pipeline due to pumping station blackout, is needed to protect facilities from waterhammer economically and efficiently. However systematic study on reversal flow time has not been done yet. So theory of reversal flow time analysis is proposed and verified with experiment using several parameters like pump specific speed, motor pole number, and characteristic curve of pipeline in this study.

매끈한 사각채널에서 경사 벽면 수가 열전달과 마찰에 미치는 효과 (Effect of Inclined Wall Number on Heat Transfer and Friction in the Smooth Channel)

  • 이명성;안수환
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.66-72
    • /
    • 2014
  • The local heat transfer and pressure drop of developed turbulent flows in the smooth convergent/divergent channels with rectangular and square cross-sectional areas along the axial distance have been investigated experimentally. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The channel hydraulic diameter ratios of 0.67 and 1.49 in the rectangular channel with 2 inclined walls and the ratios 0.75 and 1.33 in the square channel with 4 inclined walls are considered. The comparison showed that among the four channels the square divergent channel has the highest thermal performance at the identical mass flow rate, at the identical pumping power, and at the static pressure drop.

Development of thin film getters for field emission display

  • Yoon, Young-Joon;Kim, Kyoung chan;Baik, Hong-Koo;Lee, Sung-Man
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제3권1호
    • /
    • pp.74-78
    • /
    • 1999
  • For a high efficient field emission display (FED), the specific vacuum conditions below 10-7 Torr should be required. However, because the FED has the geometrical restriction due to its micro size, the thin film getters can be proposed for chemical pumping as a way to reduce impurity gases in the panel. The thin film getters, developed by employing the coating of new materials such as NI or Pt on getter surface, can be used without any activation process and show the enhanced sorption characteristics. Especially, using the Zr (1${\mu}{\textrm}{m}$) thin film getters with the Pt surface layer, the significant gettering for various active gases could be achieved from 9$\times$10-5 Torr to 1$\times$10-6 Torr or below. this good sorption properties is mainly contributed to the surface coating layer which shows the catalytic effect for gas dissociation and protects the getter materials against oxidation.

  • PDF

열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석 (Numerical Analysis on Thermal Transpiration Flows for a Micro Pump)

  • 허중식;이종철;황영규;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.27-33
    • /
    • 2007
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions. A critical element that drives Knudsen compressor Is the thermal transpiration membrane. The membranes are based on aerosol or machined aerogel. The aerogel is modeled as a single micro flow channel.

고리형 Nd:YAG 레이저에서 진동수 어긋남에 의한 출력세기의 불안정성 (Instability of the output intensity of Nd:YAG ring laser with the frequency detuning)

  • 박대윤;김기식;이재철;길상근;홍정미
    • 한국광학회지
    • /
    • 제8권3호
    • /
    • pp.204-208
    • /
    • 1997
  • 고리형 레이저에서 단일모드로 발진되는 양방향 광속의 출력세기를 맥스웰-블로흐 방정식을 사용한 준고전적 모형으로 분석하였다. Nd:YAG를 레이저 매질로 설정하고, 한쪽 방향의 광속이 반대 방향의 광속에 미치는 영향을 고려하여, 펌핑률과 감쇄율 및 진동수 어긋남에 따른 레이저 발진의 안정성과 출력변조를 조사하였다. 특히, 전산시늉을 통하여 진동수 어긋남에 따른 출력광속의 변화를 조사하고, 안정한 연속발진 조건을 규명하였다.

  • PDF