• 제목/요약/키워드: pump-probe analysis

검색결과 18건 처리시간 0.026초

원심펌프의 회전차 출구 유동 특성 (Flow characteristics at the Impeller Exit of a Centrifugal Pump)

  • 홍순삼;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.36-44
    • /
    • 2000
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A hot-film probe and a high response pressure transducer are used to investigate the flow at impeller exit and vaneless diffuser region for design and off design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, design, and numerical analysis of pumps.

  • PDF

원심펌프의 회전차 출구 유동에 관한 실험적 연구 (An Experimental Study on the Flow at the Impeller Exit of a Centrifugal Pump)

  • 강신형;홍순삼
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.234-241
    • /
    • 1999
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. However, it is not easy to measure the flow at the impeller exit and evaluate the impeller performance since there is usually strong interaction between the impeller and the volute casing. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A 3-hole Cobra probe is used to investigate the flow at impeller exit and vaneless diffuser region for design and on design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, desist and numerical analysis of pumps.

  • PDF

주기적 신호를 이용한 단일모드 광섬유의 상호 위상변조 해석 (Analysis of Cross-Phase Modulation using a periodic signal in a Single-Mode Fiber)

  • 이종형
    • 한국정보통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2963-2967
    • /
    • 2015
  • 단일모드 광섬유를 사용한 WDM 시스템에서 CPM에 의한 성능저하를 이론적으로 분석하기 위해 펌프-프로브 구조에서 펌프신호가 주기적이라고 가정하였다. 주기적 펌프신호는 '0'과 '1'이 교대로 발생하는 경우를 모델링한 것으로 CPM에 의한 EOP를 이론적으로 예측할 수 있게 한다. 유도된 이론적 결과를 수치해석 결과와 비교하였으며, 그 결과 표준 단일모드 광섬유를 사용한 경우는 넓은 영역의 채널 간격 ${\Delta}f$에 대해 유도된 이론식이 수치해석의 결과와 잘 일치하고 분산천이 광섬유를 사용한 경우는 ${\Delta}f$>100GHz 에서 일치하였다. 분산천이 광섬유를 사용하여 ${\Delta}f$<100GHz 인 경우는 CPM뿐만 아니라 FWM에 의한 성능저하가 두드러지므로 이론적 결과와 수치 해석의 결과 사이의 편차가 증가한다. 펌브-프로브 구조가 광섬유의 비선형성중 CPM의 영향을 주로 분석하기 위한 것이므로 이 결과는 예상대로 이다.

Exit Flow Measurements of a Centrifugal Pump Impeller

  • Hong, Soon-Sam;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1147-1155
    • /
    • 2002
  • Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m$^3$/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling.

SOA의 상호이득변조 특성을 이용한 파장변환기에서 입력 광신호의 세기 및 변환파장 변화에 따른 성능 분석 (Performance Analysis for the Variations of Input Intensity and Converted Wavelength in Wavelength Converters by XGM in SOA's)

  • 방준학;이성은이종현이상록
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.991-994
    • /
    • 1998
  • We demonstrate wavelength conversion of 2.5 Gb/s optical signals by cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA). We investigate the effect of input pump and probe powers on the extinction ratio and power penalty to be a measure of performance in wavelength converters. As a result, we show that the best bit error rate (BER) performance can be obtained when the probe power is kept 3 dB weaker than the pump power. And we investigate the effect of wavelength detuning on performance in wavelength converters.

  • PDF

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.193-201
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

프리즘 커플러를 이용한 도파로형 Au/$SiO_2$ 나노 혼합박막의 광 스위칭 특성 연구 (Study of the optical switching properties in waveguide type Au/$SiO_2$ nanocomposite film using prism coupler)

  • 조성훈;이순일;이택성;김원목;이경석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.76-76
    • /
    • 2008
  • The resonance properties due to the surface plasmon(SP) excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultra-sensitive operation of optical switches based on a guided wave, the application of nanocomposite film(NC) has inherent limitation originating from the excessive optical loss related with the surface plasmon resonance(SPR). In this study, we addressed this problem and present the experimental and theoretical analysis on the pump-probe optical switching in prism-coupled Au(1 vol.%):$SiO_2$ nanocomposite waveguide film. The guided mode was successfully generated using a near infrared probe beam of 1550 nm and modulated with an external pump beam of 532 nm close to the SPR wavelength. We extend our approach to ultra-fast operation using a pulsed laser with 5 ns pulse width. To improve the switching speed through the reduction in thermal loading effect accompanied by the resonant absorption of pump beam light, we adopted a metallic film as a coupling layer instead of low-index dielectric layer between the high-index SF10 prism and NC slab waveguide. We observed great enhancement in switching speed for the case of using metallic coupling layer, and founded a distinct difference in origin of optical nonlinearities induced during switching operation using cw and ns laser.

  • PDF

PAL-XFEL 빔라인 허치 구조물 개발 (The Development of Beamline Hutch Structures at PAL-XFEL)

  • 김승남;김명진;김성한;김영찬;신호철;김지화;김경숙;김광우;엄인태
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.567-577
    • /
    • 2016
  • The hutches which are installed in the beamline are largely classified into two, i.e XPP (X-ray pump probe) and CXI (Coherent X-ray image). Laser room is installed on the hutch and provides laser to XPP and CXI simultaneously. And two hutches have heavy crane to install some optics equipments. Safety and reliability of hutch structures should be taken into account for the precise operating of the laser facilities, so vibration analysis is essential to do this. The main purpose of vibration analysis is to install hutch structures with large stiffness. We have changed materials specification several times to install hutch structures having strong stiffness. Now hutch structures were installed and checked vibration status at laser room and XPP hutch. The results of laser table and robot arm satisfy vibration criteria. This paper explains about the design and vibration analysis of hutch structures.

The Theoretical Study of the Measuring Thermal Diffusivity of Semi-Infinite Solid Using the Photothermal Displacement

  • Jeon, PiIsoo;Lee, Kwangjai;Yoo, Jaisuk;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1712-1721
    • /
    • 2004
  • A method of measuring the thermal diffusivity of semi-infinite solid material at room temperature using photothermal displacement is proposed. In previous works, within the constant thickness of material, the thermal diffusivity was determined by the magnitude and phase of deformation gradient as the relative position between the pump and probe beams. In this study, however, a complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of parameters, such as, radius and modulation frequency of the pump beam and the thermal diffusivity, was studied. We propose a simple analysis method based on the zero -crossing position of real part of deformation gradient and the minimum position of phase as the relative position between two beams. It is independent of parameters such as power of pump beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.