• Title/Summary/Keyword: pump test method

Search Result 234, Processing Time 0.03 seconds

Investigation on the Flow Field Upstream of a Centrifugal Pump Impeller

  • Zhang, Yao;Luo, Xianwu;Yi, Yunchi;Zhuang, Baotang;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.209-216
    • /
    • 2011
  • The flow upstream of a centrifugal pump impeller has been investigated by both experimental test and numerical simulation. For experimental study, the flow field at four sections in the pump suction is measured by using PIV method. For calculation, the three dimensional turbulent flow for the full flow passage of the pump is simulated based on RANS equations combined with RNG k-$\varepsilon$ turbulence model. From those results, it is noted that at both design lo ad and quarter load condition, the pre-swirl flow whose direction is the same as the impeller rotation exists at all four sections in suction pipe of the pump, and at each section, the pre-swirl velocity becomes obviously larger at higher rotational speed. It is also indicated that at quarter load condition, the low pressure region at suction surface of the vane is large because of the unfavorable flow upstream of the pump impeller.

A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis (CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구)

  • 김동욱;임상필
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2004
  • The non pulsation blood pump is divided into axial flow and centrifugal style according to the direction of inlet and outlet flow. An axial flow blood pump can be made smaller than a centrifugal blood pump because centrifugal pump's rpm is fewer than axial flow pump. Hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis occurs. Evaluation of hemolysis both in in-vitro and in-vivo test requires a long-time and more expensive. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer which just can get not only amount of htmolysis but also location of hemolysis. It takes shorter time and less expensive than in-vitro test. The purpose of this study is to git Computational fluid dynamics in axial flow pump and to verify the accuracy of prediction by the possibility of design comparing CFD results with in-vitro experimental results. Also, wish to figure out the correction method that can bring improvement in shape of axial flow blood pump using CFD analysis.

A Study on Speed Control of Hydrostatic Transmission Using High Speed Solenoid Valve (고속전자밸브를 이용한 유압전동장치의 속도 제어에 관한 연구)

  • Park, S.H.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.148-157
    • /
    • 1995
  • This study deals with controlling the speed of Hydrostatic Transmission (HST) system throuth the control of pumping stroke of positive displacement pump using high-speed solenoid valve controlled by digital closed loop PWM method. The method which was done in this study is as follows: First, we modified original positive displacement pump and designed pumping stroke control system of HST by using the high-speed solenoid valve. Second, after experimenting static and dynamic characteristics on each signal flow, we identified system parameter of approximated model. Finally, to control the speed of HST, we controlled the angle of the swash plate of positive displacement pump by controlling the pressure in the control cylinder chamber. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF

Impeller Redesign of Multi-stage Centrifugal Pumps (다단 원심펌프 임펠러의 개량 수력설계)

  • Oh, JongSik;Kim, DongSoo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.177-184
    • /
    • 2001
  • For two kinds of the multi-stage centrifugal pump with diffuser vanes and return channel vanes the meanline performance prediction is applied to get information of hydraulic performance at each internal flow station, because only flange-to-flange test curves are available. As a first step of redesign fur higher efficiency, the impeller geometry is numerically investigated in the present study. Quasi-3D inviscid loading distributions are obtained, for the two impellers, using the state-of-the-art method of impeller 3D design, which provides a guide to optimal redesign. Full 3D turbulent flow fields are thereafter analyzed, using the specialized CFD code, to confirm the redesign results. The inherent limitation of the traditional graphic method of impeller design, which most of domestic pump manufacturers are now employing, is found.

  • PDF

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

Evaluation of Contaminant Concentrations in Wet and Dry Seasons during Pump-and-Treat Pilot Tests

  • Jeon, Woo-Hyun;Lee, Jin-Yong;Kwon, Hyung-Pyo;Jun, Seong-Chun;Cheon, Jeong-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.18-31
    • /
    • 2013
  • This study was performed to examine use of the pump-and-treat method for remediation of TCE, CF and CT in groundwater contaminated by DNAPL. The Woosan industrial complex is located in Wonju, about 120 km east of Seoul, Korea. Two pumping wells (KDPW7 and KDPW8) and five monitoring wells (KDMW7, KDMW8, KDMW9, KDMW10, and SKW2) were installed for the test. An asphalt laboratory is a main source of the extensive subsurface contamination at this site. To evaluate change in the concentrations of TCE, CF, and CT in groundwater in the study area, three rounds of pump-and-treat pilot tests were performed (6 July to 6 August, 22 August to 6 September, and 19 September to 2 December in 2011). The groundwater levels and the concentrations of TCE, CF, and CT exhibited negative correlations in the wet season but positive correlations in the dry season, which suggests that the TCE concentrations were mainly controlled by dilution through rainfall during the wet season and by residual TCE, CF, and CT in the unsaturated zone during the dry season. These possibilities should be considered in the full-scale remediation plan.

A Study on the Development of the Automatic Performance­Test­machine for Power Steering Pump (파워스티어링 펌프의 자동 성능 시험기 개발에 관한 연구)

  • 정재연;정석훈
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.335-341
    • /
    • 2003
  • Recently, the automotive industry is being developed rapidly. On this, a demand of high quality performance­test­machine is increased too. But it is progressive technology that must be combined hydraulic, mechanic and electronic technologies. To construct this system, the design of oil hydraulic circuit, interface skill between sensor and personal computer, data acquisition & display system and integrated control are very important skill. Moreover, reliable data is obtained with vacuum system and complex heat exchange system. Therefore, in this study, we designed a performance­test­machine by using above key technologies and we also made a integrated PC control system using personal computer which is more progressive and flexible method than PLC control.

Pressure Control of SR Driven Hydraulic Oil-Pump Using Data based PID Controller

  • Lee, Dong-Hee;Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.800-808
    • /
    • 2009
  • This paper presents a practical method of pressure control for a hydraulic oil-pump system using an SR (Switched Reluctance) drive. For a 6Mpa grade hydraulic oil-pump, a 2.6kW SR drive is developed. In order to get high performance pressure dynamics in actual applications, a data based PID control scheme is proposed. The look-up table from a pre-measured data base produces an approximate current reference based on motor speed and oil-pressure. A PID controller can compensate for the pressure error. With the combination of the two references, the proposed control scheme can achieve fast dynamics and stable operation. Furthermore, a suitable current controller considering the nonlinear characteristics of an SRM (Switched Reluctance Motor) and practical test methods for data measuring are presented. The proposed control scheme is verified by experimental tests.

A Study on Building Integrated Design and Commissioning of GHP System (지열히트펌프 시스템의 건물통합설계 및 커미셔닝에 관한 연구)

  • Kim, Ji-Young;Jang, Jea-Chul;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.1-169.1
    • /
    • 2010
  • Geothermal heat pump(GHP)system has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the economics and system reliability has been key issues and barriers to insure a better system performance as designed originally. The building integrated designs of geothermal heat pump system are test and optimize GHP system by evaluating its performance in virtual reality. System design is an iterative process that will help optimize the cost efficiency of the system. One of the primary goals is to minimize the energy imbalance between the amount of energy extracted from the ground and the energy reject to it. This will reduce the land area required to install the GHX, reduce the cost of installing it and ensure the long-term efficiency of the system. Commissioning is the process of ensuring that are designed, installed, functionally tested, and capable of being operated and maintained to performance in conformity with design intent. In this paper, Study on introduction of Initial commissioning method of Geothermal Heat Pump(GHP) system using ISO performance data has been introduced. Also KIER GHP Simulator is used to simulate actual heat pimp operating condition and test commissioning method. Result should that the experiment data base could verify the applicability of the commissioning method, and also were able to suggest a better ways to GHP commissioning.

  • PDF

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.