• Title/Summary/Keyword: pump power

Search Result 1,421, Processing Time 0.03 seconds

Performance improvement of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project (그린홈 보급확대를 위한 건물용 연료전지 보조기기의 성능 향상)

  • Lee, Sunho;Kim, Dongha;Kim, Minseok;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • According to green growth's policy, green-home dissemination's projects are promoting. Among them, stationary fuel cell systems are receiving attention due to high efficiency and clear energy. But it need absolutely to develop cost down technologies and improve system durability for commercialization of the fuel cell system. To achieve this objectives, in 2009, the Korean Government and "Korea Institute of Energy Technology Evaluation and Planning(KETEP)" launched into the strategic development project of BOP technology for practical applications and commercializations of stationary fuel cell systems, named "Technology Development on Cost Reduction of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project". This paper introduces a summary of improved BOP performances that has been achieved through the 2nd year development precesses(2010.06~2011.05) base on 1st year development precesses(2009.06~2010.05). The major elements for fuel cell systems are cathode air blowers, burner air blowers, preferential oxidation air blowers, fuel blowers, cooling water pumps, reformer water pumps, heat recovery pumps, mass flow meters, electrical valves, safety valves and a low-voltage inverter. Key targets of those elements are the reduction of cost, power consumption and noise. Invert's key targets are development the low -voltage technologies in order to reduce the number of unit cell in fuel cell system's stack.

  • PDF

Study on The Supplying effect of Gas Air Conditioning Systems (가스냉방 보급효과에 대한 연구)

  • Han, J.O.;Chae, J.M.;Choi, K.S.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2011
  • Generally, the generation methods of cooling energy are electric air conditioning (EAC) and gas air conditioning (GAC). The EAC system is caused by increasing peak power during summer. Because the electric energy has a characteristic of non-storage, the peak electric load has been issued social problem annually whether the facility to supply is enough or not. Another way to supply cooling energy, GAC system is worked by gas energy. The absorption chiller and gas engine heat pump have been commercialized for cooling. However, the total capacity of GAC is much less than EAC and it almost depends on EAC for small market. This paper described the status of cooling energy consumption in domestic and expected the cooling energy to be consumed by electric and gas energy up to 2024 year. And also the benefit of GAC was analyzed with the case of its expansion and it was aimed to give background to fit the GAC policy.

Studies on Livestock Pollution Treatment and Energy Production (축산공해의 해결방안과 에너지 생산에 관한 연구)

  • 김창한;윤여창;최재용
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.219-223
    • /
    • 1981
  • Experiments on methane gas digestion were conducted to prevent livestock pollution and develop substitute energy. When about 30(w/w)% of sludge was added to cow feces, pig feces, and poultry feces and digested at 37$^{\circ}C$ for 20 days, methane gas produced per Kg of organic matter for cow feces, pig feces, poultry feces was 131, 248 and 235 l, respectively. pH decreased slightly at first but increased gradually afterwards during digestion period. When 20, 30, and 40(w/w)% of sludge were added to the mixture of cow feces (300g) and water (200g), the volumes of gas produced were 6.1, 14.5 and 13.4 l, respectively. Volume of methane gas produced from the mixture of cow feces and saw dust was much more than that from the mixture of cow feces and rice polishings. The contents of N, K, P for digestion residues were sufficient to be utilized as a fertilizer. When methane gas digestion was carried out with cow feces in a submersible pump digester the volume of methane gas produced per Kg of organic matter was 188 l. The price of total methane gas produced at this digestion was similar to that of the electric power consumed.

  • PDF

Fabrication of Microcrystalline NaPbLa(WO4)3:Yb3+/Ho3+ Phosphors and Their Upconversion Photoluminescent Characteristics

  • Lim, Chang Sung;Atuchin, Victor V.;Aleksandrovsky, Aleksandr S.;Denisenko, Yuriy G.;Molokeev, Maxim S.;Oreshonkov, Aleksandr S.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.741-746
    • /
    • 2019
  • New triple tungstate phosphors NaPbLa(WO4)3:Yb3+/Ho3+ (x = Yb3+/Ho3+ = 7, 8, 9, 10) are successfully fabricated by microwave assisted sol-gel synthesis and their structural and frequency upconversion (UC) characteristics are investigated. The compounds crystallized in the tetragonal space group I41/a and the NaPbLa(WO4)3 host have unit cell parameters a = 5.3927(1) and c = 11.7961(3) Å, V = 343.05(2) Å3, Z = 4. Under excitation at 980 nm, the phosphors have yellowish green emissions, which are derived from the intense 5S2/5F45I8 transitions of Ho3+ ions in the green spectral range and strong 5F55I8 transitions in the red spectral range. The optimal Yb3+:Ho3+ ratio is revealed to be x = 9, which is attributed to the quenching effect of Ho3+ ions, as indicated by the composition dependence. The UC characteristics are evaluated in detail under consideration of the pump power dependence and Commission Internationale de L'Eclairage chromaticity. The spectroscopic features of Raman spectra are discussed in terms of the superposition of Ho3+ luminescence and vibrational lines. The possibility of controlling the spectral distribution of UC luminescence by the chemical content of tungstate hosts is demonstrated.

A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle (단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • In the micro turbojet engine less than 350kw power class, it is not easy to find out the good atomization fuel injector with good spray quality. However conceptually, rotating fuel injection system can give high atomization quality by only the centrifugal force of a high speed rotating shaft of the engine without high-pressure fuel pump. With this motivation, we manufactured very small rotating fuel injector of 40 mm diameter and performed under a variety of injection orifices. We measured droplet size, velocity and spray distribution by the PDPA(Phase Doppler Particle Analyzer) system. Also spray was visualized by using high speed camera. From the test results, we could understand that the length of liquid column from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet size(SMD) is decreased with the rotational speeds and is influenced by the diameter of the injection orifice and liquid film thickness.

  • PDF

Low Temperature Fluidity Performance Evaluation of Composited Package Fuel Heater for Diesel Cars (디젤차량용 통합연료히터의 저온유동성 성능평가)

  • Lee, Jeong-Hwa;Park, Hyung-Won;Lee, Woong-Su;Lee, Young-Jea;Lee, Bo-Hee;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.152-158
    • /
    • 2014
  • It is very important to supply the diesel fuel from fuel tank to combustion chamber in case of cold start procedure. the paraffin hydrocarbons are easily solidified at low fuel temperature and it can be blocking the fuel supply to the high pressure fuel pump. In order to reduce the fuel crystallization (Waxing), it have been used to develop not only cold flow additives but also the proper mounting design of fuel filter. Block heater in the fuel filter assembly have been also contained to improve the cold start and prevent blocking the fuel supply in Common Rail Direct Injection System. we can obtain the fuel pressure drop and fuel flow rate, power consumption of fuel heater to have the cold flow evaluation test with the saperated and composited fuel heater at the low ambient temperature, Due to evaluating cold flow performance of two block heater, we knew that composited package fuel heater was the excellent cold flow performance compared to separated type and obtained the parameters of cold flow.

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles (하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구)

  • Kwon, Hwabhin;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.403-408
    • /
    • 2016
  • Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.

A Study on the Infrastructure of All-electric Houses in the Viewpoint of Hydrogen Economy (수소경제 관점의 전기에너지주택 보급기반 구축에 관한 연구)

  • Hwang, Sung-Wook;Lee, Hyeon-Ju;Kim, Kang-Sik;Nah, Hwan-Seon;Kim, Jung-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • In this paper, some ideas are proposed to establish the infrastructure of all-electric houses which are able to reduce primary energy consumption and $CO_2$ emission by adopting heat pump systems and induction heating cookers excluding the use of fossil fuel energy. This electrification concept is based on the consumption of only one type of energy which means electricity as secondary energy and the conventional fossil fuel energy is just consumed to generate electricity as primary energy. All-electric house is laid on the extension of the hydrogen economy in a long-term viewpoint so that the effectiveness of this new conceptual house is estimated analyzing the reduction of $CO_2$ emission. In this analysis, the balance of electricity supply and demand is considered including the construction of new power plants by renewable energy such as nuclear, IGCC and fuel cell because decarbonization is an essential element of hydrogen technology and economy and this action is accomplished in both supply and demand side of electricity. The results are able to contribute to develop various useful hydrogen policies and strategies and some detail researches are required previously to make the best application of this new conceptual house.

A Case Study of Taeumin Patient with Gastro-esophageal reflux disease(GERD) who Treated Successfully with Yeoldahanso-tang(Reduohanshao-tang) (열다한소탕(熱多寒少湯)으로 호전된 역류성 식도염 환자 1례)

  • Kim, Yun-Hee;Kim, So-Yeon;Hwang, Min-Woo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.23 no.1
    • /
    • pp.132-138
    • /
    • 2011
  • 1. Objectives: This case study reports a Taeumin patient with Gastro-esophageal reflux disease who had suffered from chest pain, heartburn, acid regurgitation and dyspepsia who improved after Yeoldahanso-tang(Reduohanshao-tang) medication. 2. Methods: This patient had started treatment with Yeoldahanso-tang(Reduohanshao-tang), three times per day for three months and assessed the changes of the main symptoms such as chest pain, heartburn and acid regurgitation from baseline to post-treatment using a questionnaire with visual analogue scale(VAS). Electrogastrography(EGG) was also performed for assessment of gastric function from baseline to post-treatment. 3. Results: After the treatment, symptoms of GERD such as chest pain, heartburn, and acid regurgitation are almost disappeared. The patient don't need to take the proton pump inhibitor therapy. There was significant increase of % bradygastria parameters in fed EEG after treatment with Yeoldahansotang(Reduohanshao-tang). And significant increase of the power ratio after treatment was shown (20.5), compared with initial EGG(0.0). 4. Conclusions: This results show Yeoldahanso-tang(Reduohanshao-tang) can be used to treat GERD with Dry-heat symptom of Taeumin. This results suggest that Sasang Constitutional treatment for GERD patients who has a chronic condition with highly recurrence rate, might be a candidate for a therapeutic agent. Also effects of Yeoldahanso-tang(Reduohanshaotang) on GERD need further studies such as clinical trials.

Development of Plasma Reactor of Dielectric Barrier Discharge for Water Treatment (수처리용 유전체 장벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.597-603
    • /
    • 2012
  • Non-thermal plasma processing using a dielectric barrier discharge (DBD) has been investigated as an alternative method for the degradation of non-biodegradable organic compounds in wastewater. The active species such as OH radical, produced by the electrical discharge may play an important role in degrading organic compound in water. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO) was investigated as an indicator of the generation of OH radical. The DBD plasma reactor of this study consisted of a plasma reactor, recycling pump, power supply and reservoir. The effect of diameter of external reactor (15 ~ 40 mm), width of ground electrode (2.5 ~ 30 cm), shape (pipe, spring) and material (copper, stainless steel and titanium) of ground electrode, water circulation rate (3.1 ~ 54.8 cm/s), air flow rate (0.5 ~ 3.0 L/min) and ratio of packing material (0 ~ 100 %) were evaluated. The experimental results showed that shape and materials of ground were not influenced the RNO degradation. Optimum diameter of external reactor, water circulation rate and air flow rate for RNO degradation were 30 mm, 25.4 cm/s and 4 L/min, respectively. Ground electrode length to get the maximum RNO degradation was 30 cm, which was same as reactor length. Filling up of glass beads decreased the RNO degradation. Among the experimented parameters, air flow rate was most important parameters which are influenced the decomposition of RNO.