• Title/Summary/Keyword: pump operation Rule

Search Result 14, Processing Time 0.024 seconds

A Study on the Optimal Performance Control of Heat Pump System for Heating Mode Operation (열펌프 시스템의 난방 운전 시 최적 성능 제어에 관한 연구)

  • Yoo, Keun-Joong;Lee, Il-Hwan;Lee, Gil-Bong;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.669-674
    • /
    • 2006
  • The optimal control of heat pump performance for heating mode operation was investigated. Fuzzy logic was applied to control the heating performance of heat pump system and superheat at compressor discharge was taken as a control variable. Regression model was adapted to determine the optimal points where COP is maximized. Optimization of fuzzy rule table was investigated to improve operation performance of heat pump system. Experiments were carried out using original fuzzy table and the modified fuzzy rule table for heating mode operation of heat pump system. The results show that control performance of heat pump system with the modified fuzzy rule table was better than that with the original rule table.

  • PDF

Development of a Pump Operation Rule in a Drainage Pump Station using a Real Time Control Model for Urban Drainage System (내배수시스템 실시간 운영 모형을 이용한 배수펌프장 운영기법 개발)

  • Lee, Jung-Ho;Lee, Yang-Jae;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.877-886
    • /
    • 2007
  • An urban drainage system consists of two major systems : flood drainage facilities and operating practices. The facilities are composed of sewer networks, gates, and pumping stations and the operating practice consists of pump or gate operation. Then, a real time simulation system which is able to simulate urban runoff and the pump operation and to consider the backwater effect is required to operate efficiently the pump. With this system, the efficient pump operating rule can be developed to diminish the possible flood damage on urban areas. In this study, a real time simulation system was developed using the SWMM 5.0 DLL and Visual Basic 6.0 equipped with EXCEL. Also, for developing efficient pump operating Rules, two new Rules were suggested. The first Rule is designed to operate pumps considering the condition of sewer networks such as depths of each junction. The second is to discharge all the amount of inflow at each time step. Results obtained by those Rules were compared with one by the current pump operating Rule which is able to consider only the depth of the retard basin. The developed model was applied to Joonggok retard basin and verified their applicability.

A Study on Real-Time Operation Method of Urban Drainage System using Data-Driven Estimation (실시간 자료지향형 예측을 활용한 내배수 시설 운영기법 연구)

  • Son, Ahlong;Kim, Byunghyun;Han, Kunyeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • This study present an efficient way of operating drainage pump station as part of nonstructural measures for reducing urban flood damage. The water level in the drainage pump station was forecast using Neuro-Fuzzy and then operation rule of the drainage pump station was determined applying the genetic algorithm method based on the predicted inner water level. In order to reflect the topographical characteristics of the drainage area when constructing the Neuro-Fuzzy model, the model considering spatial parameters was developed. Also, the model was applied a penalty type of genetic algorithm so as to prevent repeated stops and operations while lowering my highest water level. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules.

A Technique of Inland Drainage Control Considering flood Characteristics of the Han River (한강홍수특성을 고려한 내배수 처리기법)

  • Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.99-108
    • /
    • 1991
  • Rapid changes of urban hydrologic events need new management operation rule of detention reservoir which is essential outflow control system in urban area. Therefore, this study is to develop the outflow management method of Seoul city considering the Han river flood characteristics, to analyze the inundation of detention reservoir according to variation of design storm patterns, and to examine the safety of gate due to design flood water level. From this study, new operation rule is presented. The design storm patterns are determined by instantaneous intensity method and Huff's quartile method. And the inflow hydrograph of detention reservoir is obtained by applying ILLUDAS model and RRL method. The operation rule of existing drainage pump is designed to have linear relation between storage and pumping discharge. But in this study, it is effective for preventing inundation when the operation rule of drainage pump have Gaussian function which is combined the storage of detention reservoir with its inflow according to increasing or decreasing of inflow hydrograph.

  • PDF

Water Tests of Fuel Pump for 75-ton Class Liquid Rocket Engine (75톤급 액체로켓엔진용 연료펌프의 수류시험)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kwak, Hyun-D.;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • A series of water tests of a fuel pump for liquid rocket engines are performed at a room temperature. According to the test results, the head coefficient of the pump follows the conventional similarity rule - unlike this, the pump shows better efficiency with higher rotational speed. Also, it is found that the pressure at the rear bearing outlet is higher than expected because the inlet of bypass pipe line is narrow. Furthermore, the cavitation performance of the fuel pump is found to be sufficient for the engine operation and is better at the lower flow ratio and higher rotational speed.

Development of an accelerated life test procedure considering the integrated equivalent load of an implement working pump for an agricultural tractor

  • Moon, Seok-Pyo;Baek, Seung-Min;Chung, Sun-Ok;Park, Young-Jun;Han, Tae-Ho;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1123-1134
    • /
    • 2020
  • The goal of this study was to develop an accelerated life test for an implement working pump for an agricultural tractor. The field experiments were conducted to measure the load of an implement working pump during major agricultural operations such as plow tillage, rotary tillage, baler operations, and wrapping operations. The measurement system for an implement working pump load was constructed using a pressure sensor, the engine rotational speed, and the hitch pump displacement. The measured implement working pump load was calculated as an equivalent load for each agricultural operation using the Palmgren-Miner rule, which is a cumulative damage method. The equivalent load was calculated using the total load data and peak load data when the total data included the operation of an implement working. The annual usage time of the agricultural tractor was applied to develop two integrated equivalent loads. The acceleration factor was calculated to develop an accelerated life test and was calculated from the two integrated equivalent loads, the maximum pressure, and the flow rate conditions of the hitch pump. In Korea, the warranty life of a tractor is 2,736 hours, and the time required for the test to guarantee the operational life of tractors was calculated as 7,561 hours. The acceleration factors were calculated as 453.6 and 38.3, respectively, from the total load data and peak load data. The fatigue test time can be shortened by 16.7 and 197.4 hours according to the result of the acceleration factors.

The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump (원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안)

  • Hee Chan Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

Evaluation of Drain Pump System by Inundation Analysis in Urban Underground Passage (도시 지하차도 침수 분석을 통한 강제배제시설 평가)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1192-1200
    • /
    • 2007
  • A general rainfall outflow in urban drainage has early time of concentration because urban drainage areas are most paved area. In general, rainfall outflow is flowed in drainage pump station and is discharged to rivers in urban areas. However it is excluded through drainage pumps about a heavy rainfall which exceed the design rainfall and the rainfall outflows increase the urban inundation risk. A current pump operation is control according to water level of collecting well or reservoir in drain pump station. But recently, the localized downpours are happened frequently in urban drainage and the current pump stations are frequently incapable of the heavy rainfall outflows. In this study, a real urban inundation was simulated and the drain capacity of drain pump station was evaluated by analysis about flood-factor in urban underground passage. Then the analysis about the inundation was done by the simulation about the real rainfall which cause the inundation. Also, in the simulation the inundation risk and the evaluation of flood-factor were analyzed according to change of the pump operation rule.

  • PDF

Determination of operating offline detention reservoir considering system resilience (시스템 탄력성을 고려한 빗물저류조 운영수위 결정)

  • Lee, Eui Hoon;Lee, Yong Sik;Jung, Donghwi;Joo, Jin Gul;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.403-411
    • /
    • 2016
  • Recently, the number of occurrences of inundation and the severity of flood damage has increased rapidly as the frequency of localized heavy rainfall and the ratio of impervious area increased in urban areas. Most local governments focus on employing structural measures (e.g., the construction of detention reservoirs/pump stations, rehabilitation of drainage and sewer pipes) to prevent urban inundation. On the other hand, the effectiveness of implementing such structural measures is being dimished because there are already many inundation prevention facilities. The limitation of structural measures can be overcoming by employing non-structure measures, such as flood alerts and the operation of drainage facilities. This study suggests the pump operation rule (i.e., suggesting pump stop level) for a new detention reservoir operating method, which triggers the operation of a pump based on the water level at the monitoring node in urban drainage system. In the new reservoir operation, a total of 48 rainfall events are generated by the Huff distribution for determining the proper pump stop level. First, the generated rainfall events are distributed as frequencies, quartiles, and durations. The averaged system resilience value was determined to range from 1.2 m to 1.5 m is based on the rainfall-runoff simulation with rainfall generated by the Huff distribution. In this range, 1.2 m was identified considering the safety factor of 1.25 by the Standard on sewer facilities in 2011.

An Application of Fuzzy Control Models to Inland Drainage Pumping Stations with Different Characteristics for Protection of Inland Flooding (상이한 제원특성을 가진 빗물펌프장에서의 퍼지제어모형 적용)

  • Shim, Jae Hyun;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.107-118
    • /
    • 1993
  • Continuous increasing of impervious area due to urbanization and rainfall quantity due to environmental changes aggravate flooding risk in low land area. Therefore. Seoul municipal authorities go on securing an ample budget for reinforcement and establishment of inner water and inland drainage pumping facilities. But. there is no investment for developing optimal operation rules for appropriate application of existing facilities. In this study. fuzzy control techniques are developed. and applied to 57 stations of inner water and inland drainage pump for model assessment. In these results. fuzzy models have more efficiency in the inland flooding protection than the existing pump operation rule by water level in the same conditions.

  • PDF