• 제목/요약/키워드: pump induced vibration

검색결과 30건 처리시간 0.021초

전달함수를 이용한 펌프(50Hp)의 진동가진력 산정 (Estimation of Pump Induced Vibration Force Using Transfer Function)

  • 노병철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.157-162
    • /
    • 1998
  • Dynamic loads may arise from rotating parte of pump if they are insufficiently balanced. The magnitude of pump induced vibrations varies according to the weight, eccentricity, and unbalanced mass of pump. This is a study to estimate the pump induced vibration in time and frequency domain by transfer function. The transfer function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response and transfer function by complex calculation. The amplitudes and components of 50Hp pump vibration force are suggested.

  • PDF

고낙차 펌프-터빈에서의 축계 진동 특성 (Characteristics of the Shaft Vibration in a High Head Pump-Turbine)

  • 하현천;최성필
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

고낙차 펌프-터빈에서의 축계 진동 특성 (Characteristics of the Shaft Vibration in a High Head Pump-Turbine)

  • 하현천;최성필
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

진동수응답함수 측정에 따른 펌프 가진력 산정 (Estimation of Pump Induced Vibration Force by Frequency Response Function)

    • 한국지진공학회논문집
    • /
    • 제3권1호
    • /
    • pp.103-112
    • /
    • 1999
  • 본 연구는 두 지점간의 진동수 응답함수를 이용하여 시간 및 진동수 영역에서의 원심펌프(20Hp. 50Hp) 가진력을 추정하기 위한 것이다. 진동수 응답함수는 실수부와 허수부에 대한 신호정보를 가지고 있으며 응답함수 역시 실수부와 허수부에 대한 신호정보를 가지고 있다 따라서 이들 진동수 응답함수 및 응답함숴의 복소수 계산으로부터 가진력을 실험적으로 구하였으며 이론적인 방법에 의하여 구한 가진력과 실험적으로 구한 값을 비교함으로서 펌프에 의한 주진동수 성분의 크기는 펌프 및 모터중량의 10-25% 정도가 됨을 제시하였다. 가진력 산정을 위한 시간영역에서의 불평형질량의 크기는 펌프 및 모터중량의 약 30-60%임을 알수 있었다 한편 펌프회전에 의한 진동은 주진동수 이외에도 주진동수의 2-3배의 크기를 갖는 성분이 있음을 알 수 있었으며 대상 콘크리트 슬래브의 고유진동수와의 가진진도수비를 달리함에 따라 정확한 진동전달률을 조절하는데 활용할 수 있다.

  • PDF

사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석 (Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump)

  • 김성훈;홍예선
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

재열기 온도조절 급수배관의 진동저감방안 연구 (A Study on Vibration Control for Reheater Attemperator Piping in Power Plant)

  • 전창빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1-5
    • /
    • 2007
  • A majority of piping vibration problems are induced by internal fluid pulsation; turbulent flow, vortex shedding at internal discontinuities, and pressure pulsation at equipment nozzles. The pulsation at the pressure sources resonates acoustically with the piping and the amplified pressure pulsation can generate shell mode vibration in the piping. Reheater attemperator piping supplies water from feedwater pump to reheater attemperator to control the boiler temperature. In normal operating condition, the high frequency shell mode vibration occurred in the piping with the high level of sound(105 ${\sim}$ 117 dB). The vibration sources are pressure pulsation in the pump nozzle and the frequencies are related to the blade passing frequencies. The objects of this paper are to analyze the cause of the high frequency vibration and to establish corrective actions.

  • PDF

재생펌프 소음특성의 측정 및 해석에 관한 연구 (The measurement and analysis of Regenerative Pump Noise)

  • 김태훈;서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1067-1071
    • /
    • 2004
  • In this paper, the characteristic of the regenerative pump is reviewed by the measurement and the analysis. The dominant noise sources are harmonic components of the rotating impeller frequency. The acoustic characteristics and the noise source position at the dump are identified. In order to reduce the high-level peak noise, the interior flow of the pump chamber is analyzed by CFD (Computational Fluid Dynamics). Acoustic pressure is calculated with Ffowscs Williams and Hawkings equation. As the result of the analysis new design of the pump chamber is recommended. The recommended pump is compared with original pump by evaluating the RMS value of a interior static pressure and the sound pressure level. The new pump chamber recommended by analysis results is proved by a process of the measurement. The overall SPL of a recommended pump is reduced about 3 dBA.

  • PDF

대형 입형펌프 운전 중 공진현상의 진동 저감을 위한 스티프너 설계 및 성능 검증 (Design of Stiffeners for Reducing Resonant Vibration of Large Vertical Pumps and Its Performance Verification)

  • 류길수;봉석근;한승우;노철우;이동민;이정우;박준홍
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.65-72
    • /
    • 2013
  • This case study presents a practical method to reduce resonant vibration of large vertical pumps. The pumps are driven at 400 rpm rated speed by induction motor. The vibration was not significantly large when operated at this rated speed. Large vibration was occurred when the pump was operated below the rated speed for flow control. Due to the large vibration resonance, variable speed operation of the pump was not possible for several months at worst cases. To find an efficient vibration control method, the flexural responses of pumps for both normal and transient operations were measured. The measured modal characteristics were compared with those of finite element analysis. When the pump was operated at a specific rpm, the natural mode whose resonance frequency is twice the rotating angular speed induced the large vibration. The retrofit utilizing stiffeners to reduce this resonant vibration were performed. Effects of designed stiffeners on reducing vibration were validated through tests after actual installation.

역스월 유로 입력을 가지는 밸런스 슬리브를 적용한 고압 다단 펌프의 진동 특성 (Vibration Characteristics of High Pressure Multi-Stage Pump with Anti-Swirl Injection Balance Sleeve)

  • 곽현덕;이용복;김창호;이봉주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.214-219
    • /
    • 2002
  • As the tangential flow inside the clearance of tribe elements such as bearings and seals is increased as the shaft speed increases, the system stability will be decreased due to the increment of the instability parameter. To reduce the tangential flow inside the clearance of the balance sleeve, anti-swirl injection mechanism is applied. The balance sleeve is used in resisting the axial force induced by impeller in high pressure multi-stage pump. In this paper, total three cases are experimentally investigated; original balance steeve, anti-swirl injection balance steeve with 0 axial degree and anti-swirl injection balance sleeve with 30 axial degree. Experiments are focused in the comparison of vibration level and leakage flow rate. The results clearly shows that the anti-swirl injection balance sleeve with 0 axial degree improves the vibration characteristics. However, the anti-swirl injection balance sleeve with 30 degree aggravates the vibration characteristics. In the standpoint of leakage performance, both anti-swirl injection balance sleeves show the better result than the original balance sleeve.

  • PDF