• Title/Summary/Keyword: pulsed magnetic field stimulus

Search Result 9, Processing Time 0.021 seconds

The Effect of Magnetic Field Direction on the EEG and PPG Obtained from Pulsed Magnetic Stimulus at Acupoint PC9

  • Kim, Sun-Wook;Lee, Jin-Yong;Lee, Hyun-Sook
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.259-262
    • /
    • 2011
  • Compared to acupuncture, the pulsed magnetic field (PMF) stimulus is a useful tool for treatment of many physical conditions and health maintenance due to its advantages as a noninvasive and nontoxic medical treatment. The purpose of this study was to investigate the effect of PMF stimulus direction at PC9 on the alpha activity of electroencephalogram (EEG) and vascular aging calculated from photoplethysmograph (PPG). It can be concluded that the direction of PMF stimulus affects the increase of alpha activity of EEG and PPG, indicating the vascular stiffness and the sclerosis level of blood vessels weakly relevant to the direction of PMF stimulus.

Comparative Analysis of Photoplethysmography under Pulsed Magnetic Field and Low Level Laser Stimulus: Motivation for Blood Flow Increase using Stimulus on Acupoint LI4 (Hegu)

  • Kim, Young Jin;Yoo, Jun Sang;Hwang, Do Guwn;Lee, Hyun Sook
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • The purpose of this study was to investigate the effect of pulsed magnetic field (PMF) and low frequency low level laser (LFLLL) stimuli on acupoint LI4 (Hegu) using photoplethysmography (PPG). Our PMF system was designed to generate maximum intensity of 0.20 T at a transition time of 0.16 ms, with pulse intervals of 1 Hz. The diode laser with wavelength of 650 nm and power of 5 mW was also employed. It was observed the change of the pulsating blood volume through measuring PPG signals from both hands. These results imply that stimulating acupoint LI4 with PMF and LFLLL improves the circulation of peripheral vascular system. In particular, PMF stimulation brings a big improvement of the blood flow even with short term stimulation of 3-4 minutes compared to LFLLL stimulus.

Analysis of Electroencephalogram and Electrocardiogram at an Acupoint PC9 during Pulsed Magnetic Field Stimulus

  • Lee, Jin-Yong;Hwang, Do-Gwen;Yoo, Jun-Sang;Lee, Hyun-Sook
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2012
  • We investigated the effects of pulsed magnetic fields (PMF) stimulus on electroencephalogram (EEG) alpha activity and heart rate variability (HRV) from electrocardiogram (ECG) measurements with various stimulus durations at acupoint PC9. The alpha activity in the EEG and the ratio of low frequency power and high frequency power (LHR) in the HRV, a reflection of sympathovagal activity, were increased and decreased, respectively, after PMF stimulus of 3 min. Our spectral analysis quantitatively proved that the changes in the EEG alpha activity were consistent with an autonomic function in the ECG. These findings suggest that appropriate PMF stimulus results in the same effect as that of acupuncture applied to the acupoint PC9, which is closely related to the parasympathetic activity of the autonomic nervous system.

Study on Improvement of Blood Stagnation by Pulsed Magnetic Field

  • Son, Hee Jung;Yoo, Jun Sang;Lee, Myeung Hee;Hwang, Do Gwen;Lee, Hyun Sook
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • This study explored the effect of pulsed magnetic field (PMF) stimulus on the improvement of blood stagnation by means of photoplethysmography (PPG). Our stimulus system was designed to generate PMF with a maximum intensity variation of 0.20 T at a transition time of $160{\mu}s$, with pulse intervals of 1 Hz. In order to quantitatively estimate vascular condition, indices such as blood vessel tension (BVT), stress power (SP), differential pulse wave index (DPI) and remained blood volume (RBV) were calculated from the second derivative of the PPG signal and power density spectrum (PDS). Our results showed that non-invasive PMF stimulus was effective in improving blood stagnation. Therefore, it may be concluded that appropriate PMF stimulus affects the blood circulatory system.

An Analytical Comparison in Electoencephalography and Electrocardiography under Pulsed Magnetic Field and Acupuncture Stimulus on Acupoint PC9

  • Lee, Hyun Sook;Hwang, Do Guwn;Cha, Yun-Yeop
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.192-196
    • /
    • 2013
  • We have investigated the changes of electroencephalography (EEG) and electrocardiography (ECG) under pulsed magnetic field (PMF) and acupuncture stimulus on acupoint PC9. In order to compare quantitatively the effect of PMF and acupuncture stimulus, the difference of alpha activities are calculated from EEG spectra, and the spectrum curves of ECG were analyzed in the frequency domain of heart rate variability (HRV). The increase of alpha activities after both stimuli could be explained that the impulse of stimulus on PC9 might pass through sensory nerve following meridian and approach the cerebral cortex, causing the central nervous system (CNS) to be activated for pacifying emotion and calming the mind. The decrease in sympathovagal activity of HRV after both stimuli indicates that parasympathetic nerves were activated and the sympathetic nerves were in constrained condition. These findings suggest that PMF could be patient-friendly alternative non-invasive medical treatment for influencing human physiology, in comparison with acupuncture inserting the needle and inducing nervous and anxious state to subject.

Acceleration of Cell Proliferation and Gene Expression in Human Chondrosarcoma Cells Stimulated by Strong Pulse Magnetic Field

  • Shin, Sung Chul;Chung, Eui Ryong;Hwang, Do Guwn
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • For the treatment of osteoarthritis, pulsed electromagnetic field stimulus has been suggested as a useful therapeutic method in rehabilitative medicine. Most studies have been performed under low-frequency and low-energy to find out biological properties for stimulating chondrocyte with pulsed magnetic field. In this study, the effect of strong pulse magnetic field on the human chondrosarcoma cells (SW-1353) has been investigated by means of cell counting, morphologies, and gene expression of cartilage extracellular matrix genes. The SW-1353 cells were exposed under the field intensities of 270, 100, 55, 36, and 26 mTesla during 6 hours a day in 5 consecutive days. The pulse magnetic field with an LRC oscillating signal has the pulse width of 0.126 msec and stimulation period of 1 sec. For the 270 and 100 mTesla stimulation, the cell proliferation significantly increased in 21-24% as compared with the non-stimulated cells. Gene expression of cartilage extracellular matrix genes (ACAN, COMP and COL2A1) was assayed by quantitative real time-PCR method. The ACAN gene expression showed a significant brightness, which means the increase on gene expression, compared with the non-stimulated cells. Our results suggest that the strong pulse magnetic field stimulation can be utilized to accelerate cell proliferation and gene expression on human chondrosarcoma cells.

Assessment of Pulsed Magnetic Field Stimulus by Using Finger Photoplethysmogram and Pressure Pulse Waveform

  • Lee, Jin-Yong;Go, In-Suk;Choi, Jae-Won;Jang, Tae-Sun;Shin, Sang-Hoon;Lee, Hyun-Sook;Hwang, Do-Guwn;Kim, Sun-Wook
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.209-212
    • /
    • 2010
  • Photoplethysmogram (PPG) and pressure pulse waveform (PPW) were compared and evaluated for the efficacy of stimulating knuckles by using the pulsed magnetic field. Both signals were observed simultaneously while the knuckles were exposed for 10 min to the pulsed magnetic field, with maximum field intensity of 0.8 T and transition time of 0.126 msec. After 5 min stimulation of the knuckles, the results showed that the aging indexes calculated from the second derivative of the PPG were increased from -1.913 to 0.072, and that of the PPW from -0.063 to 0.387. However, for the relatively long-term stimulation for 10 min, we found that the values of both the aging indexes of the second derivatives and augmentation index of the PPW returned to the starting level. The changes observed in characteristic factors such as the aging indexes of the second derivatives and augmentation index of the PPW indicate the potential of pulsed magnetic field stimulation as a therapeutic method for the treatment of patients with peripheral vascular disease.

Effect of Pulse Magnetic Field Stimulus on Blood Flow using Digital Infrared Thermal Imaging (체열진단을 통한 펄스자기장 자극기의 혈류개선효과 고찰)

  • Lee, Hyun-Sook
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.180-184
    • /
    • 2011
  • The changes in the blood flow in the peripheral vascular system under strong pulsed magnetic fields (pMF) were studied by digital infrared thermal imaging (DITI). After pMF stimulus temperatures in stimulated area were commonly increased in both groups of age and gender. In order to reduce heat generated from coil in pMF stimulus system plastic moldings were fabricated, so that certain distance was kept between stimulus system and the skin and to prevent direct contact to the skin. It is believed that skin temperature is increased by internal electromagnetic energy stimulated the peripheral vascular system by non-contact method.

Dynamics of Rouleaux Patterns of Red Blood Cells under Pulse Magnetic Field (강한 펄스자기장 자극에 의한 적혈구 연전현상의 활동성 조사)

  • Hwang, Do Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • It is widely known that pulsed magnetic field (PMF) is very useful tool to manipulate chemical and physiological processes in human body. The purpose of our study is to observe dynamics of rouleaux patterns of red blood cells (RBC) under PMF. The aggregation of RBCs or rouleaux formation is caused by fibrinogen in blood plasma. The maximum magnetic field intensity is 0.27 T and pulse time of 0.102 msec and pulse repetition rate was 1 Hz. PMF stimulus was applied to the palm of left hand for 5, 10, 15 and 20 min. Live blood analysis was used in vitro in order to quantitatively estimate the velocity of RBC exposed to PMF stimulus. The velocity of stacked-RBC of 10 minute PMF stimulus was increased up to $8{\times}10^{-4}m/sec$, but it decreased rapidly as the time passed. The results of present study have adduced that PMF stimulus on hand provide the improvement of RBC rouleaux formation, increase of RBC's moving velocity as well as low blood viscosity.