• Title/Summary/Keyword: pulse wave velocity

Search Result 163, Processing Time 0.027 seconds

A Vascular Characteristic Index of Blood Pressure Variation using the Pulse Wave Signal

  • Kim, Gi-Ryon;Jung, Dong-Keun;Ye, Soo-Young;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.213-219
    • /
    • 2008
  • Pulse waves continuously change with respect to the characteristics and status of the cardiovascular system and in relation to the blood pressure (BP) and the pulse wave velocity (PWV). Monitoring the vascular condition by analyzing the variations in pulse waveforms has been used to diagnose vascular disorders and in drug treatment of arteriosclerosis and peripheral circulatory obstruction. In this paper, we investigated the vascular characteristic index with regard to the BP and classified by pulse wave signals. The pressure pulse wave and photoplethysmography (PPG) were measured simultaneously while subjects exercised, producing changes in the BP, to analyze the variation in the vascular characteristic index. We investigated the correlation between the BP and vascular characteristic index with regard to the classification methods of the pulse wave. The reflection index (RI) and vascular stiffness index were correlated with the diastolic BP, but no correlation was found between these parameters and the systolic BP. These results suggest the possibility of estimating BP through simple measurements of pulse waves.

Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.427-436
    • /
    • 2017
  • Concrete technologists have used ultrasonic pulse velocity test for decades to evaluate the properties of concrete. However, the presented research work focuses on the use of ultrasonic pulse velocity test to study the degradation in steel-concrete bond subjected to increasing loading. A detailed experimental investigation was conducted by testing five identical beam specimens under increasing loading. The loading was increased from zero till failure in equal increments. From the experimentation, it was found that as the reinforced concrete beams were stressed from control unloaded condition till complete failure, the propagating ultrasonic wave velocity reduced. This reduction in wave velocity is attributed to the initiation, development, and propagation of internal cracking in the concrete surrounding the steel reinforcement. Using both direct and semidirect methods of testing, results of reduction in wave velocity with evidence of internal cracking at steel-concrete interface are presented. From the presented results and discussion, it can be concluded that the UPV test method can be successfully employed to identify zones of poor bonding along the length of reinforced concrete beam. The information gathered by such testing can be used by engineers for localizing repairs thereby leading to saving of time, labor and cost of repairs. Furthermore, the implementation strategy along with real-world challenges associated with the application of the proposed technique and area of future development have also been presented.

The Effects of Plasma Homocysteine Concentration on Upper Arm-Ankle Pulse Wave Velocity (혈장 호모시스테인 농도가 상완-발목 맥파 속도에 미치는 영향)

  • Kang, Ji-Hun;Shin, Sang-Yol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.673-680
    • /
    • 2019
  • This study was conducted to investigate the effects of plasma homocysteine concentration on the brachial-ankle pulse wave velocity between the normal homocysteine group and the asymptomatic high homocysteine group. 435 subjects who visited the general health examination center from April 1 to October 31, 2016, as well as to compare the direct correlation of the brachial-ankle pulse wave velocity, which indirectly reflects the homocysteine test and arterial stiffness, as a predictor of future cardiovascular outcome. As a result of the study, age, waist circumference, BUN, and plasma creatinine were significantly higher, and HDL was significantly lower in the high homocysteine group (> $15{\mu}mol/L$) than in the normal homocysteine group (< $15{\mu}mol/L$) (p=0.05). In addition, homocysteinemia was associated with smoking and drinking (p<0.001) and was significantly higher in males (p<0.001). The right and left brachial-to-ankle pulse wave velocities were significantly higher in the high homocysteine group (right p<0.001, left p=0.003) before calibrating the relevant variables. There was no significant difference between right and left brachial-to-ankle pulse wave velocities after calibrating the relevant variables. Therefore, further studies on the independent association of lowering homocysteine concentration and prevention of cardiovascular disease and the relationship between homocysteine and renal function are needed.

Evaluation of Concrete Strength Using Compression Wave Velocity (압축파 속도를 이용한 콘크리트의 강도 평가)

  • 이회근;이광명;김동수;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.697-702
    • /
    • 1999
  • Among several non-destructive testing methods, ultrasonic pulse velocity method has been widely used for the evaluation of concrete strength. However, this method might not provide accurate estimated results since factors influencing the relationship between strength and wave velocity is not considered. In this study, the evaluation methods of concrete strength using compression wave velocities measured by either ultrasonic pulse velocity method or impact-resonance method are proposed. A basic equation is obtained by the linear regression with velocity vs. strength data at a specific age and then, ageing factor is employed in the equation to consider the difference of the increasing rate between wave velocity and strength. Strengths predicted by the proposed equation agree well with test results.

  • PDF

Fabrication and Evaluation of Sensor for Measuring Pulse Wave Velocity using Piezo Film and Conductive Textile (압전 필름과 전도성 섬유를 이용한 맥파 전달 속도 측정을 위한 센서의 제작 및 성능평가)

  • Kim, Jung-Chae;Jee, Sun-Ha;Yoo, Sun-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Arterial stiffness is causing the serious problems for human who is suffered from hypertension and metabolic syndrome. So it is important that measure the arterial stiffness for early prevention. Many researches point out that pulse wave velocity(PWV) is the reliable and simple method to predict arterial stiffness. In this paper, we developed the sensing parts that detect the pulse wave and ECG by using piezoelectric film and conductive textile with elastic band. Our system could detect 3ch pulse wave and ECG. Simultaneously, our algorithm extracts the features for calculating the delays among pulse waves. The delays are the significant parameter to estimate PWV, thus we design the experiment for evaluating the performance of our sensing parts. The reference is PP-1000(HanByul Meditech, Korea) that is good for performance evaluation. As a result, the start point of the pulse wave was the most reliable feature for comparing with PP-1000(r=0.691, P=0.00). The results between two operators showed that there is only a slight difference in the reproducibility of the devices. In conclusion, we assume that the suggested sensor could be more comfortable and faithful method for arterial stiffness.

The Correlation of Pulse Wave Velocity and Atherosclerotic Risk Factor in Stroke Patients

  • Jin, Bok Hee;Han, Min Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Pulse wave velocity (PWV) is used to non-invasively estimate the severity of arteriosclerosis by measuring arterial stiffness. Increased arterial stiffness measured by PWV stands for progressive arteriosclerosis and is caused by atherosclerotic risk factors. This study is focused on how brachial-ankle pulse wave velocity (baPWV) is related to the leading risk factors for arteriosclerosis or atherosclerosis. Subjects were 114, 69 males and 45 females who are in 60's and had baPWV test for acute stroke. The results are as follows: the group with increased arterial stiffness showed significant increase in HbA1c, total cholesterol, BSBP (brachial artery systolic blood pressure), BDBP (brachial artery diastolic blood pressure), CSBP (central artery systolic blood pressure), CDBP (central artery diastolic blood pressure), augmentation index (AIx) and diabetes mellitus. Correlation analysis between baPWV and atherosclerotic risk factor showed significant relationship in age, HbA1c, LDL cholesterol, BSBP, BDBP, CSBP, CDBP and augmentation index. baPWV was independently related to age and BSBP in multiple linear regression analysis. The group with increased arterial stiffness was independently related to BDBP in multiple logistic regression analysis. This study might be meaningful in evaluating the relationship between arterial stiffness and atherosclerotic risk factor in a new way, and be helped to make various studies for cardiovascular disease.

Change of Heart Rate Variability on Menstruation in Women at College (여대생 월경(月經)의 심박변이도 변화에 대한 연구)

  • Kim, Gyeong Cheol;Kim, Yi Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.745-752
    • /
    • 2012
  • This study aims to show the change of Heart Rate Variability(HRV) and Pulse wave velocity(PWV) on menstruation in women at college. Heart Rate Variability(HRV) and Pulse wave velocity(PWV) of 122 women at college were measured at their menstruation and ordinary period. SDNN, RMSSD, SDSD, HRV Index(%), stress resistance and cardiac activity were significantly higher at their menstruation than ordinary period, but Total Power and pNN50(%) were opposite. The automatic nervous system balance and physical stress were decreased in groups without dysmenorrhea than with one. PWV(E-R) and PWV(E-L) were much higher at menstruation than ordinary period. PTT(F-R) and PTT(F-L) were decreased in groups without dysmenorrhea than with severe one. We demonstrated that menstruation can effect on Heart Rate Variability and Pulse wave velocity and dysmenorrhea can cause the imbalance of autonomic nervous system.

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Effect of Heart Rate Variability, Pulse Wave Velocity in Women of Breast Cancer Patients Care by Mountain Cultivated Ginseng Pharmacopuncture (산양삼(山養蔘) 약침(藥鍼)이 유방암절제술 여성의 심박변이도, 맥파전달속도에 미치는 영향)

  • Kim, Gyeong-Cheol;Park, Sang-Wook;Kim, Yi-Soon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.15 no.3
    • /
    • pp.245-260
    • /
    • 2011
  • Objectives: The aim of this experiment is to know the effect of Mountain Cultivated Ginseng Pharmacopuncture on Heart Rate Variability (HRV), Pulse wave velocity (PWV) in Middle Aged Women. Methods: We investigated on 40 women of breast cancer patients. First, we measured their Heart Rate Variability(HRV), Pulse wave velocity (PWV) and then Mountain Cultivated Ginseng Pharmacopuncture $20m{\ell}$ were injected on them. After 30 minutes, we measured Heart Rate Variability(HRV), Pulse wave velocity(PWV) again. As a result, method of non-equivalent control group non-synchronized design were used for evaluation. Results: In HRV, Mean HRV is significantly decreased from 69.15 to 63.34 after injection. Mean RR is significantly increased from 877.20 to 962.10 after injection. SDNN is significantly increased from 32.56 to 41.34 after injection. PNN50 is significantly decreased after injection. RNSSD, SDSD, TP, VLF is significantly increased after injection. Stress Resistance ability is significantly increased from 37.55 to 44.60 after injection. And In PWV, E-R, E-L, H-R, H-L is significantly decreased after injection. Conclusions: Effect of Mountain Cultivated Ginseng Pharmacopuncture on Heart Rate Variability (HRV) increased adaptability of autonomic nervous system and on Pulse wave velocity (PWV) decreased arterial stiffness.

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.