• Title/Summary/Keyword: pulse simulation

Search Result 1,155, Processing Time 0.024 seconds

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.

Voltage Source Equipment for the Grid Fault Testing and Analysis of Total Harmonic Distortion According to PWM Methods

  • Gwon, Jin-Su;Kim, Chun-Sung;Kang, Dae-Wook;Park, Jung-Woo;Kim, Sungshin
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1081-1092
    • /
    • 2014
  • Renewable energy is being spotlighted as the electric power generating source for the next generation. Due to an increase in renewable energy systems in the grid system, their impact on the grid has become non-negligible. Thus, many countries in the world, including Europe, present their own grid codes for grid power conversion devices. In order to experiment with these grid codes, grid fault test equipment is required. This paper proposes both equipment and a control method, which are constructed with a 7-level cascaded H-bridge converter, that are capable of generating various grid faults. In addition, the Pulse Width Modulation (PWM) method for multilevel converters is compared and analyzed. The proposed structure, the control method, and the PWM method are verified through simulation and experimental results.

Novel Five-Level Three-Phase Hybrid-Clamped Converter with Reduced Components

  • Chen, Bin;Yao, Wenxi;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1119-1129
    • /
    • 2014
  • This study proposes a novel five-level three-phase hybrid-clamped converter composed of only six switches and one flying capacitor (FC) per phase. The capacitor-voltage-drift phenomenon of the converter under the classical sinusoidal pulse width modulation (SPWM) strategy is comprehensively analyzed. The average current, which flows into the FC, is a function of power factor and modulation index and does not remain at zero. Thus, a specific modulation strategy based on space vector modulation (SVM) is developed to balance the voltage of DC-link and FCs by injecting a common-mode voltage. This strategy applies the five-segment method to synthesize the voltage vector, such that switching losses are reduced while optional vector sequences are increased. The best vector sequence is then selected on the basis of the minimized cost function to suppress the divergence of the capacitor voltage. This study further proposes a startup method that charges the DC-link and FCs without any additional circuits. Simulation and experimental results verify the validity of the proposed converter, modulation strategy, and precharge method.

Microcomputer-Based Maximum Efficiency Control of a Synchronous Motor. (마이크로 컴퓨터를 이용한 동기 전동기의 최대 효율제)

  • Hyun, Dong-Seok;Park, Min-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.12
    • /
    • pp.874-887
    • /
    • 1987
  • The efficiency of a synchronous motor can be substantially improved by controlling armature voltage, field excitation, and load angle on optimum values which yield minimum input power at any specified torque and speed. This improvement is particularly noticeable in the case of light loads. In addition, the control of armature input voltage improves the power factor at which the motor operates. Employed in the analysis is a new equivalent circuit model of the motor which incorporates the frequency dependent nature of the motor parameters and the effects of iron loss. The stability of synchronous motor operation is studied by applying the Nyquist stability criterion to the linearized equations which describe the behavior of the motor as the motor loads perturb about a steady-state operating point. This investigation reveals that, in some cases, the stable region of the motor is delineated from the results of a computer simulation. With a view to reducing harmonic loss and improving torque pulsation from harmonic components, a very poweful pulse amplitude modulation (PAM) method using an 16-bit microcomputer has been developed. This method has the advantages of simplicity of control algorithms and requires small memory space for storing thyristor trigger angles for a three-phase PAM inverter. The method can be used for smooth control of both modulation depth and frequency over a wide range.

  • PDF

Current-Programmed Control of Three Phase PWM AC-AC Buck Converter

  • Choi, Nam-Sup;Li, Yulong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.356-361
    • /
    • 2005
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order and inherent current protection. By considering only the magnitude components, the same scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. Sensing the output voltage and the inductor current, an error signal will be generated by comparing the output voltage magnitude with a reference value. Then the error signal will be processed by a PI compensator to generate the current command. The converter switches will the change the state by a periodic clock pulse or at the instants when the inductor current magnitude reaches the current command. As an example case, the buck converter is treated. The converter analysis is carried out by applying the complex DQ circuit transformation to obtain basic physical insight into the converter operation and to establish some important characteristic equations for control purpose. The simulation with Simplorer shows the validity of the proposed scheme and the experimental results support the verification of the design.

  • PDF

Performance Analysis of Symbol Timing Recovery for 16QAM System in Rayleigh Fading (레일리 페이딩 환경에서 16QAM 시스템에서 심볼 타이밍 복원의 성능분석)

  • 문재경;김영수;김창주
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.201-210
    • /
    • 1996
  • In this paper, we analyzed performance of a symbol timing recovery scheme for 16QAM Radio system. As a symbol timing recovery scheme, both maximum amplitude method(MAM) and wave difference method(WDM) are analyzed employing a pulse shaping filter, such as raised cosine filter(RCF) and nonlinear filter(NLF). Simulation result shows that the jitter performance of MAM or WDM using NLF is better than that using square root RCF. In order to estimate and compensate for the Rayleigh fading PSAM(Pilot Symbol Assisted Modulation) and space diversity are also employed. Consequently, BER performance of about $10^{-4}$ is obtained for $E_b/N_o$= 20 dB.

  • PDF

Recognition of PRI modulation types of radar signals using the autocorrelation (자기상관관계를 이용한 레이더 신호의 PRI 변조형태 인식 기법)

  • Ryoo Young-Jin;Kim Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.61-67
    • /
    • 2006
  • In electronic support systems, the analysis of PRI modulation characteristics for radar signals has attracted much interest because of the problem of the identification ambiguity in dense electronic warfare signal environments. A new method of recognizing the PRI modulation types of radar pulse signals is proposed for electronic support. The proposed method recognizes the PRI modulation types using the classifiers which are based on the property of the linear autocorrelation of the PRI sequences for each PRI modulation type. In addition, the proposed method estimates the PRI modulation period for the PRI modulation types with the periodicity. Simulation results are presented to show the performance of the proposed method.

Delay-Throughput Analysis Based on Cross-Layer Concept for Optical CDMA Systems (Cross-layer 개념을 바탕으로 한 광 CDMA 시스템을 위한 Delay-Throughput 분석)

  • Kim, Yoon-Hyun;Kim, Seung-Jong;O, Yeong-Cheol;Lee, Seong-Chun;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.314-319
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (COMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) is considered In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical COMA network can be substantially improved by increasing the interleaver length and the number of iterations in the decoding process. The results of this paper can be applied to implement the indoor optical wireless LANs.

  • PDF

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.