• Title/Summary/Keyword: pulse simulation

Search Result 1,155, Processing Time 0.025 seconds

Study of Cross Correlation Using DRS(Delayed Reference Sample) for Precision Time Measurement of Input Signal on Multilateration (다변측정감시시스템 신호 입력 시각 정밀 측정을 위한 DRS(Delayed Reference Sample)를 이용한 Cross Correlation 방안 연구)

  • Chang, Jae-Won;Lee, Sang Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.244-250
    • /
    • 2018
  • Multilateration acquires the transponder signal of target from receivers installed on the ground and calculates the position of the target using the difference of the signal acquisition time of each receiver. One of the factors that influence the positioning accuracy of Multilateration using the TDOA calculation method is the error due to the precision measurement of signal input time. When measuring the signal input time at the receiver, the input signal is sampled using the reference clock of the receiver and a reference sample having the same sampling rate is applied to the cross correlation technique. Therefore, the accuracy of the signal input time is proportional to the reference clock. In this paper, the algorithm for precisely measuring the signal input time by performing cross correlation between the input signal of the receiver and DRS(Delayed Reference Sample) is proposed. In order to verify this, we implemented the pulse signal of the transponder that is transmitted from the target using Matlab. Through the simulation, cross correlation between the proposed DRS and the input signal was performed. From this result, the performance of the precise measurement of signal input time was analyzed.

Turbo FLASH NRI Using Optimized Flip Angle Pattern: Application to Inversion-Recovery T1-Weighted Imaging (최적화된 Flip Angle Pattern을 사용한 Turbo FLASH MRI: Inversion-Recovery T1-Weighted Imaging에의 응용)

  • Oh, C.H.;Choi, H.J.;Yang, Y.J.;Lee, D.R.;Ryu, Y.C.;Hyun, J.H.;Kim, S.R.;Yi, Y.;Jung, K.J.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.55-56
    • /
    • 1998
  • The 3-D Fast Gradient Echo (Turbo FLASH, Turbo Fast Low Angle Shot) sequence is optimized to achieve a good T1 contrast using variable excitation flip angles. In Turbo FLASH sequence, depending on the contrast preparation scheme, various types of image contrast can be established. While proton density contrast is obtained when using a short repetition time with a short echo time and small flip angles, T1 or T2 weighting can be obtained with proper contrast preparation sequences applied before the above proton density Turbo FLASH sequence. To maximize the contrast to noise ratio while retaining a sharp impulse response (smooth frequency domain response), the excitation flip-angle pattern is optimized through simulation and experiments. The TI (the delay after the preparation sequence which is a 180 degree inversion RF pulse in the IR T1 weighted imaging case), TD (the delay time between the Turbo FLASH sequence and the next preparation), and TR are also optimized fur the best image quality. The proposed 3-D Turbo FLASH provides $1mm\times1mm\times1.5mm$ high resolution images within a reasonable 5-8 minutes of imaging time. The proposed imaging sequence has been implemented in a Medison's Magnum 1.0T system and verified through simulations as well as human volunteer imaging. The experimental results show the utility of the proposed method.

  • PDF

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

Analysis of Oscillometric Model based on Shape of Arterial Pressure (동맥압 형태를 고려한 오실로메트릭 모델분석)

  • 임성수;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 2000
  • This paper describes the analysis of the oscillometric method based on the shape of arterial pressure and proposal of a new algorithm for estimating the blood pressure by computer simulation. In the first step, the arterial pressure model which is able to control the shape of arterial pressure was designed and then we simulated the oscillometric model using both the existing exponential model showing the static arterial pressure-volume relation and the designed arterial pressure model. By analyzing the correlation of characteristic ratio based on the shape of arterial pressure, we could find that the characteristic ratio was not the only standard parameter for estimating systolic and diastolic pressure. We were able to estimate the shape of arterial pressure by computing the correlation of arterial pressure shape with oscillation shape. Finally, we proposed an algorithm which is able to estimate systolic and diastolic pressure according to pressure(Pp) table constructed from the relation of maximum amplitude of oscillation and arterial pressure shape. We tested 60 arterial pressure waveforms having various arterial pressure shape and pulse. As a results, the absolute deviation average values of the estimation of systolic, diastolic and mean pressure were 1.62%, 2.40% and 2.20%, respectively. In conclusions, the proposed algorithm showed the possibility of usefullness in estimating the blood pressure.

  • PDF

Operation Analysis of Resonant DC/DC Converter able to Harvest Thermoelectric Energy (열전에너지 수확이 가능한 공진형 DC/DC 컨버터의 동작 해석)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Kwan-Youl;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.150-158
    • /
    • 2010
  • The operational characteristics of a resonant DC/DC converter, which can harvest thermoelectric energy, is analyzed, depending on the relative magnitudes of the input voltage and the load voltage. The resonant converter consists of LC resonant circuit connected to DC input source and a resonant pulse converter in which the input energy is transferred to the load as the resonant capacitor voltage is peak. The resonant capacitor doubles the input voltage by the resonance phenomenon. By the relative magnitude between the input voltage and the output voltage, the resonant DC/DC converter operates in three different modes. For boost mode, the peak voltage of the resonant capacitor is smaller than the load voltage. For hybrid mode, the peak voltage of the resonant capacitor is bigger than the load voltage and every switching period has both the boost mode and the direct mode. For the direct mode, the input voltage is bigger than the load voltage and the converter transfers directly the input energy to the load without the switching operation. Operation principles and the feasibility of the converter for the thermoelectric energy harvesting are verified with PSPICE simulation and experiment.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

A Study on Operation Method of Protection Device for LVDC Distribution Feeder in Light Rail System (경전철용 LVDC 배전계통의 보호기기 운용 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung Sik;Lee, Hu-Dong;Kim, Gi-Yung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.25-34
    • /
    • 2019
  • Recently, when a fault occurs at a long-distance point in a LVDC (low voltage direct current) distribution feeder in a light rail system, the magnitude of the current can decrease to less than that of the load current of a light rail system. Therefore, proper protection coordination method to distinguish a fault current from a load current is required. To overcome these problems, this paper proposes an optimal algorithm of protection devices for a LVDC distribution feeder in a light rail system. In other words, based on the characteristics of the fault current for ground resistance and fault location, this paper proposes an optimal operation algorithm of a selective relay to properly identify the fault current compared to the load current in a light rail system. In addition, this paper modelled the distribution system including AC/DC converter using a PSCAD/EMTDC S/W and from the simulation results for a real light rail system, the proposed algorithm was found to be a useful and practical tool to correctly identify the fault current and load current.

Image enhancement in ultrasound passive cavitation imaging using centroid and flatness of received channel data (수신 채널 신호의 무게중심과 평탄도를 이용한 초음파 수동 공동 영상의 화질 개선)

  • Jeong, Mok Kun;Kwon, Sung Jae;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.450-458
    • /
    • 2019
  • Passive cavitation imaging method is used to observe the ultrasonic waves generated when a group of bubbles collapses. A problem with passive cavitation imaging is a low resolution and large side lobe levels. Since ultrasound signals generated by passive cavitation take the form of a pulse, the amplitude distribution of signals received across the receive channels varies depending on the direction of incidence. Both the centroid and flatness were calculated to determine weights at imaging points in order to discriminate between the main and side lobe signals from the signal amplitude distribution of the received channel data and to reduce the side lobe levels. The centroid quantifies how the channel data are distributed across the receive channel, and the flatness measures the variance of the channel data. We applied the centroid weight and the flatness to the passive cavitation image constructed using the delay-and-sum focusing and minimum variance beamforming methods to improve the image quality. Using computer simulation and experiment, we show that the application of weighting in delay-and-sum and minimum variance beamforming reduces side lobe levels.

A Study on Pose Control for Inverted Pendulum System using PID Algorithm (PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구)

  • Jin-Gu Kang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.400-405
    • /
    • 2023
  • Currently, inverted pendulums are being studied in many fields, including posture control of missiles, rockets, etc, and bipedal robots. In this study, the vertical posture control of the pendulum was studied by constructing a rotary inverted pendulum using a 256-pulse rotary encoder and a DC motor. In the case of nonlinear systems, complex algorithms and controllers are required, but a control method using the classic and relatively simple PID(Proportional Integral Derivation) algorithm was applied to the rotating inverted pendulum system, and a simple but desired method was studied. The rotating inverted pendulum system used in this study is a nonlinear and unstable system, and a PID controller using Microchip's dsPIC30F4013 embedded processor was designed and implemented in linear modeling. Usually, PID controllers are designed by combining one or two or more types, and have the advantage of having a simple structure compared to excellent control performance and that control gain adjustment is relatively easy compared to other controllers. In this study, the physical structure of the system was analyzed using mathematical methods and control for vertical balance of a rotating inverted pendulum was realized through modeling. In addition, the feasibility of controlling with a PID controller using a rotating inverted pendulum was verified through simulation and experiment.

SVC Based Multi-channel Transmission of High Definition Multimedia and Its Improved Service Efficiency (SVC 적용에 의한 다매체 멀티미디어 지원 서비스 효율 향상 기법)

  • Kim, Dong-Hwan;Cho, Min-Kyu;Moon, Seong-Pil;Lee, Jae-Yeal;Jun, Jun-Gil;Chang, Tae-Gyu
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • This paper presents an SVC based multi-channel transmission technique. Transmission of high definition multimedia and its service efficiency can be significantly improved by the proposed method. In this method, the HD stream is divided into the two layer streams, i.e., a base layer stream and an enhancement layer stream. The divided streams are transmitted through a primary channel and an auxiliary channel, respectively. The proposed technique provides a noble mode switching technique which enables a seamless service of HD multimedia even under the conditions of abrupt and intermittent deterioration of the auxiliary channel. When the enhancement layer stream is disrupted by the channel monitoring in the mode switching algorithm, the algorithm works further to maintain the spatial and time resolution of the HD multimedia by upsampling and interpolating the base layer stream, consequently serving for the non disrupted play of the media. Moreover, the adoption of an adaptive switching algorithm significantly reduces the frequency of channel disruption avoiding the unnecessary switching for the short period variations of the channel. The feasibility of the proposed technique is verified through the simulation study with an example application to the simultaneous utilization of both Ku and Ka bands for HD multimedia broadcasting service. The rainfall modeling and the analysis of the satellite channel attenuation characteristics are performed to simulate the quality of service performance of the proposed HD broadcasting method. The simulation results obtained under a relatively poor channel (weather) situations show that the average lasting period of enhancement layer service is extended from 9.48[min] to 23.12[min] and the average switching frequency is reduced from 3.84[times/hour] to 1.68[times/hour]. It is verified in the satellite example that the proposed SVC based transmission technique best utilizes the Ka band channel for the service of HD broadcasting, although it is characterized by its inherent weather related poor reliability causing severe limitations in its independent application.