• Title/Summary/Keyword: pulse sensor

Search Result 546, Processing Time 0.028 seconds

Remote Monitoring of Patients and Emergency Notification System for U-Healthcare

  • Lee, Jun;Jang, Hyun-Se;Yang, Tae-Kyu;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • This study proposes a remote monitoring of patients and emergency notification system with a camera and pulse wave sensor for U-Healthcare. The proposed system is a server client model based U-Healthcare system which consists of wireless clients that have micro-controller, embedded-board for patient status monitoring and a remote management server. The remote management server observes the change of pulse wave data individually in real-time sent from the clients that is to be remote-monitored based on the pulse wave data stored by users and divides them into caution section and emergency section. When the pulse wave data of a user enters an emergency situation, the administrator can make a decision based on the real-time image information and pulse rate variability. When the status of the monitored patient enters the emergency section, the proposed U-healthcare system notifies the administrator and relevant institutions. An experiment was conducted to demonstrate the pulse wave recognition of the proposed system.

Oriental Pulse Diagnostic Apparatus with an emphasis on sense on fingers (수지부 감각정보에 중점을 둔 한의학적 전자 맥진 시스템에 대한 고찰)

  • Kim, Byoung-Chul;Chae, Han
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.112-120
    • /
    • 2008
  • This study aims to develop a system for diagnosing pulse and disease conditions based on oriental medical classics to collect objective quantitative information in the traditional pulse examination environment that uses fingers. For this purpose, the study suggested a thimble-type sensor unit as the most appropriate pulse analyzer and proposed a traditional method to measure the pulse pressure wave on the spots of cheok, gwan and chon by installing the pulse analyzer on the forefinger, middle finger and medical finger. Then, it was interpretively found that this pulse analyzer enables us to objectively recognize 28 pulses defined in Oriental medical classics including the yukjo pulse, described as the buchimjisak-heosil pulse, and the hong, yoo, hyeok and san pulses. Finally, the study proposed a method to extract key parameters essential to pulse condition diagnosis from the pulse pressure wave measured by this pulse analyzer.

  • PDF

Development of Feature Points Detection Algorithm for Measuring of Pulse Wave Velocity (맥파 전달 속도(PWV) 측정을 위한 특징점 검출 알고리즘 개발)

  • Choi, Jung-Hyeon;Cho, Wook-Hyun;Park, Jun-Ho;Kim, Nam-Hoon;Seong, Hyang-Sook;Cho, Jong-Man
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.343-350
    • /
    • 2011
  • The compliance and stiffness of artery are closely related with disease of arteries. Pulse wave velocity(PWV) in the blood vessel is a basic and common parameter in the hemodynamics of blood pressure and blood flow wave traveling in arteries because the PWV is affected directly by the conditions of blood vessels. However, there is no standardized method to measure the PWV and it is difficult to measure. The conventional PWV measurement has being done by manual calculation of the pulse wave transmission time between coronary arterial proximal and distal points on a strip chart on which the pulse wave and ECG signal are recorded. In this study, a pressure sensor consisting of strain gauges is used to measure the blood pressure of arteries in invasive method and regular ECG electrodes are used to record the ECG signal. The R-peak point of ECG is extracted by using a reference level and time windowing technique and the ascending starting point of blood pressure is determined by using differentiation of the blood pressure signal and time windowing technique. The algorithm proposed in this study, which can measure PWV automatically, shows robust and good results in the extraction of feature points and calculation of PWV.

Property of Wireless Clip-type Pulsimeter by Using a Hall Device and a Permanent Magnet (영구자석과 홀소자를 이용한 무선 집게형 맥진기 특성 연구)

  • Yoon, Woo-Sung;Ji, Jong-Ok;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.179-185
    • /
    • 2014
  • The existing USB connection type of the clip-type pulsmeter equipped with a Hall sensor and a permanent magnet does not have any error or malfunction to measure the pulse wave. The property of the wireless networking system communicating the pulse wave data through the wireless LAN communication by combination USB with Ethernet and Ethernet to Wi-Fi converting system instead of existing USB connection method was investigated. There are exited that the patient needs to stay at close site of the desktop PC without USB connector and the wireless transfer and receiver networking system has pulse wave measurement SW to receive the pulse wave data. Thus it is expected that the study becomes helpful to measure and transfer the exact pulse wave of the patient in a comfortable pose at close range.

The Study of the Photo Diode Output Signal for Pusle Radiation Detection (펄스방사선 탐지를 위한 Photo Diode 출력특성 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.869-871
    • /
    • 2012
  • In this paper, we make silicon photodiodes for the detection of pulsed radiation that affects electronics devices and study the output characteristics of photodiodes using circuit design. We conducted the simulation for pulse sensing circuit and experimented the photodiode output characteristics using a high luminance light emitting diode. The results can be used for the design of the input sensor that is trigger of additional module for protecting a electoronics circuit from high energy pulse radiation.

  • PDF

Non-intrusive measurement of pulse arrival time and Estimation of Systolic Blood Pressure (무구속적 맥파 전달 시간의 측정을 통한 혈압 추정)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.489-492
    • /
    • 2005
  • Even though the blood pressure is one of the most widely used index for the healthcare monitoring of hypertensive and normotensive persons, there is no non-intrusive measurement method which is commercialized until now. Pulse Arrival Time (PAT) is known that it has close relation with the systolic blood pressure (SBP) and arterial stiffness. In this study, SBP estimation methods by non-intrusive measurement of PAT are suggested. For the unconstrained measurement of PAT, the first method used the electrically non contact electrocardiogram (ENC-ECG) technique and the reflective type of Photoplethysmography (PPG) sensor on the computer mouse. In the second method, ENC-ECG and the air pressure sensor in the seat cushion on a chair were measured. The third method used ECG electrodes and PPG sensors on the toilet seat cover. The validation and regression analysis of the relationship of PAT and SBP are summarized. These methods have considerable errors to be used for all people. But these can be applied for each subject after the parameter customization within acceptable error. So, it is feasible for suggested methods to be used for monitoring of SBP in daily life in non-intrusive way when there is personal identification system of each subject.

  • PDF

Speed Control of High Speed Miniature BLDCM Based on Software PLL (소프트웨어 PLL 기반 소형 고속 BLDCM의 속도 제어)

  • Lee, Bong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • This paper presents a PLL(Phase Lock Loop) approach for effective speed and torque control of high speed miniature BLDCM(Brushless DC Motor) using hall sensor. The proposed speed control method based on PLL uses only a phase shift between reference pulse signal according to speed reference and actual pulse signal from hall sensor. It doesn't use any speed calculation, and calculates a direct current reference from phase shift. The current reference is changed to reduce the phase shift between reference and actual pulse. So the actual speed can keep the reference speed. The proposed control scheme is very simple but effective speed control is possible. In order to obtain a smooth torque production, the reference current is changed using acceleration and deceleration slope. The proposed control scheme is verified by experimental results of the 50W, 40,000[rpm] high speed miniature BLDCM.

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications

  • Rachim, Vega Pradana;An, Jinyoung;Pham, Quan Ngoc;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • In this paper, a 32-variable pulse position modulation (32-VPPM) scheme is proposed to support a red-green-blue light-emitting-diode (RGB-LED)-based optical camera communication (OCC) system. Our proposed modulation scheme is designed to enhance the OCC data transmission rate, which is targeted for the wearable biomedical data monitoring system. The OCC technology has been utilized as an alternative solution to the radio frequency (RF) wireless system for long-term self-healthcare monitoring. Different biomedical signals, such as electrocardiograms, photoplethysmograms, and respiration signals are being monitored and transmitted wirelessly from the wearable biomedical device to the smartphone receiver. A common 30 frames per second (fps) smartphone camera with a CMOS image sensor is used to record a transmitted optical signal. Moreover, the overall proposed system architecture, modulation scheme, and data demodulation are discussed in this paper. The experimental result shows that the proposed system is able to achieve > 9 kbps using only a common smartphone camera receiver.

Speed Control of DC Motor for Roller Type Seeder (롤러형 파종기 구동용 직류모터의 회전속도 제어)

  • 이중용;김유용;박상래
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.351-358
    • /
    • 2000
  • This study was conducted to develop a speed control system of a DC motor which drove a barley seeder mounted on a combine harvester. Barley seeder mounted on a combine has been known to reduce labor and cost of barley cultivation. However, development of the seeder has been unsuccessful because the combine, a dedicated rice and barley harvester has not enough space and proper power take-off for barley seeder. To develop a barley seeder, small powered motor speed controller was required. A proximity sensor for detecting working speed of the combine and a programmable one board microprocessor was used to develope a control system. Motor parameters and motor constant, relationship between seeding rate, motor speed, groove volumes of a tested roller, torque were measured. The proximity sensor sent a frequency signal to the microprocessor. In laboratory experiments, the excitation voltage of the motor was shown not to be proportional to the size of pulse width (duty ratio). A table transforming frequency signal, that represented for working speed to proper pulse width was developed from seeding rate experiments. However, seeding rate at low frequency signal was not proportional to the working speed. Seeding rate control proportional to the frequency signal was achieved by shifting of the frequency signal.

  • PDF