• Title/Summary/Keyword: pulse generator

Search Result 445, Processing Time 0.028 seconds

Development of a High Voltage Pulse Generator to Process of Underwater (슬러지 전처리 공정을 위한 고전압 펄스 전원시스템의 개발)

  • Park, Sang-Wook;Lee, Kyung-Tae;Son, Byung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1785-1787
    • /
    • 2002
  • 폐수에서 발생하는 슬러지(Sluge)의 효과적인 처리를 위한 전기적 충격파를 발생시키는 장치로 고전압 펄스 전원 시스템을 제작하였다. 제작한 고전압 펄스 전원 시스템의 제원은 최대 출력 전압 60 kV, 최대 반복 주파수 500 Hz 이며, 한 펄스 당 최대 출력 에너지는 20 J 이다.

  • PDF

A study on Driver module for a high-power pulsed laser diode (고출력 펄스 반도체 레이저의 드라이버 모듈에 관한 연구)

  • Jung, In-Suk;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1078-1080
    • /
    • 1999
  • A laser pulse generator which consists of charging resistor, energy storage capacitor laser diode, and switching elements was designed in order to generate 15ns, 20W laser pulses. And the effects of performances of SCR and FET as switching elements are compared. When SCR is used, the SCR's low maximum voltage makes the circuit so complicated, and when FET is used, the FET needs the special sate driver which improves the FET's operation.

  • PDF

400kV-Class Compact High Voltage Pulse Generator Using Magnetic Core Tesla Transformer (자심 테슬라 변압기를 이용한 400kV급 소형 고전압 펄스 발생기 개발)

  • Shin, Jin-Ho;Youn, Dong-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.385-386
    • /
    • 2014
  • 본 논문에서는 자심 테슬라 변압기를 이용한 400kV급 소형 고전압 펄스 발생기를 개발하였다. 테슬라 변압기의 효율 및 출력전압 향상을 위해 4분할 적층 원통형 자심 구조를 새롭게 제안 하였다. 제안 된 자심 구조를 적용하여 테슬라 변압기를 제작 한 결과, 최대 출력전압 425kV, 에너지 변환 효율 50%를 확인하였다.

  • PDF

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Design of Single Power CMOS Beta Ray Sensor Reducing Capacitive Coupling Noise (커패시터 커플링 노이즈를 줄인 단일 전원 CMOS 베타선 센서 회로 설계)

  • Jin, HongZhou;Cha, JinSol;Hwang, ChangYoon;Lee, DongHyeon;Salman, R.M.;Park, Kyunghwan;Kim, Jongbum;Ha, PanBong;Kim, YoungHee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.338-347
    • /
    • 2021
  • In this paper, the beta-ray sensor circuit used in the true random number generator was designed using DB HiTek's 0.18㎛ CMOS process. The CSA circuit proposed a circuit having a function of selecting a PMOS feedback resistor and an NMOS feedback resistor, and a function of selecting a feedback capacitor of 50fF and 100fF. And for the pulse shaper circuit, a CR-RC2 pulse shaper circuit using a non-inverting amplifier was used. Since the OPAMP circuit used in this paper uses single power instead of dual power, we proposed a circuit in which the resistor of the CR circuit and one node of the capacitor of the RC circuit are connected to VCOM instead of GND. And since the output signal of the pulse shaper does not increase monotonically, even if the output signal of the comparator circuit generates multiple consecutive pulses, the monostable multivibrator circuit is used to prevent signal distortion. In addition, the CSA input terminal, VIN, and the beta-ray sensor output terminal are placed on the top and bottom of the silicon chip to reduce capacitive coupling noise between PCB traces.

Engine Ignition Timing Control Circuit Using Microcomputer (마이크로 컴퓨터를 이용(利用)한 엔진점화시기(點火時期) 제어회로(制御回路))

  • Min, Y.B.;Lee, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 1987
  • In order to improve the thermal efficiency of an internal combustion engine, various ignition timing control systems were examined and the best one was chosen. The parts used for the systems were a microcomputer system with DAS, 8 bit output port (D-FLIP FLOP), three types of isolation circuit, two types of ignition timing pulse generator, three types of switching circuit and two types of high voltage ignition circuit. Most systems did not operate well due to the effects of electromagnetic waves and surge currents occurring when the ignition began or ended with resulting high voltage. The best ignition timing control system was found to be the combination of (microcomputer system)-(ignition timing pulse generator using step motor position control pick-up)-(switching circuit using TR logic)-(high voltage ignition circuit using CDI).

  • PDF

Development of DDL(Digital Delay Line) Module Using Interleave Method Based on Pulse Recognition and Delay Gap Detection (펄스 인식 및 지연 간격 검출을 통한 인터리브 방식의 디지털 시간 지연 모듈 개발)

  • Han, Il-Tak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • Radar performance test is one of the major steps for radar system design. However, it is restricted by time and cost when radar performance tests are performed with opportunity targets. So various simulated target generators are developed and used to evaluate radar performance. To simulate the target's range, most of simulated target generators are developed with optical line or DRFM(Digital RF Memory) technique but there are many restrictions such as limit of range imitation and test scenario because of their original usage. In this paper, DDL(Digital Delay Line) module for development of simulated target generator is designed with precise range simulation and easily embodiment feature. And pulse recognition and delay gap detection technique are used to simulate the time delay without distortions. Developed DDL module performances are verified through their performance tests and test results are described in this paper.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

Implementation of DS-UWB Impulse Generator with Suppression of Frequency Band for WLAN (WLAN 주파수 대역이 억제된 DS-UWB 임펄스 생성기 구현)

  • Park, Chong-Dae;Kim, Bum-Joo;Kim, Dong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, Gaussian impulse generator for DS-UWB was proposed and fabricated so that the frequency band allocated to WLAN, around 5 GHz, was suppressed in accordance with the regulation of radiation spectrum limitation defined by FCC. In order to transform an unipolar rectangular signal to a Gaussian impulse, the proposed impulse generator consists of two stage impulse generation parts; the first stage using dual SRD and the second stage using gain switching of semiconductor laser diode. The result shows a gaussian impulse as narrow as 180 psec in width. In addition, high order derivative Gaussian filter with a structure of 4 stage ring resonators was designed and fabricated so that DS-UWB impulse generator could reduce the frequency spectrum of WLAN by 25 dB compared to the spectral power of th adjacent UWB band.

  • PDF