• Title/Summary/Keyword: pulse duration

Search Result 511, Processing Time 0.038 seconds

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

Electrically Assisted Springback Control of Titanium Alloys and its Industrial Application (통전소성을 이용한 티타늄 합금의 스프링백 제어 및 응용)

  • Jeong, Y.H.;Hong, S.T.;So, H.W.;Jeong, H.J.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.130-134
    • /
    • 2019
  • Electrically assisted (EA) springback reduction of grade 2 titanium alloys is demonstrated through u-bending experiments. A single pulse of electric current having a short duration of less than 0.5 sec is applied to a specimen during u-bending. The effect of the electric current condition on the resultant springback is then evaluated. The experimental result shows that the springback of the selected grade 2 titanium alloy could almost be eliminated through application of electric current with a duration less than 0.5 sec prior to unloading. Lastly, an exemplary industrial application of EA springback control is presented.

Application of a Pulse Electric Field to Cross-flow Ultrafiltration of Protein Solution

  • Kim, Hyong-Ryul;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.46-50
    • /
    • 1999
  • The application of pulsed electric field was investigated in the crossflow ultrafiltration of BSA (bovine serum albumn) to economize the application time of electric current as well as to avoid inherent problems of long-term application of electric field. During the application of various cyclic patterns of pulsed electric current, the averaged filtration flowrate and the degree of concentration were maintained higher than those obtained in the absence of electric current application. The temperature increase, pH change, and BSA loss by electrodeposition were all negligible during the operation. The averaged filtration flowrate increased as the ON/OFF duration ratio of electric current was higher and as the period of ON/OFF cycle was shorter. The re-establishment of concentration polarization was dependent to the duration of current OFF state and, therefore, a longer duration of OFF state was not favorable in maintaining higher filtration flow rate. Although the averaged filtration flowrate was enhanced as the magnitude of electric current increased, the flowrate enhancement became smaller as the magnitude of current value above which the degree of electrokinetic depolarization is no further improved.

  • PDF

A Study on Minimum Ignition Energy by Controlled Discharge Energy (방전에너지 제어에 의한 최소점화에너지의 고찰)

  • Choi, Sang-Won;Ohsawa, Atsushi
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.36-39
    • /
    • 2007
  • It is important to know Minimum Ignition Energy(MIE) of flammable materials for ignition hazard of chemical processes etc.. Currently a capacitor discharge is used mainly to measure the MIE. Then, it is impossible to control actively discharge energies and discharge time because the MIE measurement uses a high voltage capacitor and fixed capacitor. However, the control of discharge energy and discharge time will be convenient if self-sustain discharge is used. In this paper, we measured the MIE by self-sustain discharge of a pulse shape to propose the new measuring method of the MIE. AS a result, ignition energies are increased gradually as discharge duration time gets longer, and discharge current grows larger. Also, an arc discharge and a glow discharge occurred during the experimental period, and the ignition by glow discharges happened when discharge duration time was $90{\mu}s$, discharge current was 8A and 1A Especially, the MIE occurred the 0.05mm and 0.08mm of the gap distance between discharge electrode in the same discharge duration time.

Cross Correlated Effects of Radiation Damping and the Distant Dipolar Field with a Pulsed Field Gradient in Solution NMR

  • Chung Kee-Choo;Ahn Sang-Doo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.46-58
    • /
    • 2006
  • With a simple pulse sequence ($\pi/2$-{gradient, duration T}-acquisition) in solution NMR, detected signal has slowly grown up to percents of the equilibrium magnetization. The source of this unusual resurrection of dephased magnetization after a crushed gradient is cross-correlated effects of radiation damping and the distant dipolar field, which has been demonstrated by a numerical simulation and theoretical analysis.

  • PDF

Experiments and analysis of droplet formation influenced by driving waveform (구동파형에 따른 잉크액적 형성 실험 및 해석)

  • Shin, Dong-Youn
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.26-29
    • /
    • 2008
  • In the fields of electronics and displays where inkjet printing has demonstrated its capability to fabricate colorant subpixels of thin film transistor liquid crystal(TFT LCD) color filters and organic light emitting diode (OLED) displays, conducting tracks and TFTs, the production of satellite droplets is one of primary things to eliminate because they generally deteriorate the pattern quality. To understand the production mechanism of satellite droplets in this paper, driving waveforms such as monopolar and bipolar were employed and the influence of the pulse duration time were investigated in both experimental and numerical aspects.

  • PDF

Design of an Isolator of High Power Laser-Amplifier Series-(II) (고출력 레이저-증폭기 계열의 Isolator 설계-(II))

  • 나승환
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.7-11
    • /
    • 1989
  • A Faraday rotator is designed with the HOYA FR-5 rotator glass. We find that traveling light rotates 45$^{\circ}$in the glass when magnetic field intensity is about 3.0$\times$105AT/m. The current of 2.7KA flowing in the coil of the 0cm diameter, 29cm long and 41 windings generates this magnetic field. A pulse forming network is designed for this current of 84 sec duration. The network is analyzed numerically to find the relevant circuit parameters for the flattest current waveform.

  • PDF

Parthenogenetic Activation of Porcine Oocytes and Isolation of Embryonic Stem Cells-like Derived from Parthenogenetic Blastocysts

  • Xu, X.M.;Hua, J.L.;Jia, W.W.;Huang, W.;Yang, C.R.;Dou, Z.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1510-1516
    • /
    • 2007
  • These experiments were carried out to optimize the parameters of electrical activation, methods of parthenogenetic activation and embryo culture in vitro and meanwhile to isolate embryonic stem cells-like (ESCs) derived from porcine parthenogenetic blastocysts (pPBs). These results showed that, as the electric field strength increased from 1.0 to 2.7 kV/cm, the cleavage rate of parthenogenetic embryos increased gradually but the rate of oocyte lysis was significantly increased when using 2.7 kV/cm field strength. The rate of cleavage in 2.2 and 2.7 kV/cm groups was significantly increased in comparison with that of the 1.0 kV/cm group. A voltage field strength of 2.2 kV/cm DC was used to investigate blastocyst development following activation with a single pulse of 30 or $60-{\mu}sec$ pulse duration. The optimum pulse duration was 30-${\mu}sec$, with a blastocyst rate of 20.7%. Multiple pulses were inferior to a single pulse for blastocyst yield (8.0% vs. 29.9) (p<0.05). For porcine oocyte parthenogenetic activation methods, the rates of cleavage (79.0% vs. 59.8%) and blastocysts (19.4% vs. 3.4%) were significantly increased in electrical activation in contrast to chemical activation with ionomycin/6-DMAP (p<0.05). Rates of cleavage and blastocyst formation in NCSU-23 and PZM-3 embryo media were higher than those of G1.3/G2.3 serial culture media, but there was no significant difference among the three groups. The total cell number of blastocysts in PZM-3 embryo culture media containing $5{\mu}g/ml$ insulin was significantly higher than that of the control (no insulin) ($44.3{\pm}9.1$ vs. $33.9{\pm}11.7$). For isolation of PESCs-like, the rates of porcine blastocysts attached to feeder layers and ICM colony formation in Method B (nude embryo culture) were better than those in Method A (intact embryo culture).

Physiological Properties of Microbial Cells Treated by Pulsed Electric Field(PEF) (고전압 펄스 전기장 처리된 미생물 세포의 생리특성)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Choi, Hee-Don;Hong, Hee-Doo;Ha, Sang-Do;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.368-374
    • /
    • 1999
  • This study was designed to investigate effects of pulsed electric field (PEF) treatment on physiological changes of microbial cells, using domestically fabricated pilot scale PEF device. The effect of non-thermal PEF treatment on physiological characteristics of microorganisms was determined by salt resistance, the amount of UV absorbents, cell staining, recovery rate of defected cells, and changes in structure of cell membrane. Salt resistance of Escherichia coli, Bacillus subtilis and Rhodotorula minuta was examined after PEF treatment at 40 kV/cm, 84 pulse, $10{\mu}s$ pulse duration. Approximately $1\;log_{10}$ cell number of viable microorganisms was decreased by addition of salt. PEF treatment significantly increased the amount of UV absorbents at 260 and 280 nm because of leakage from damaged cell membrane by PEF treatment. Although three kinds of microorganisms treated by PEF were difficult to be observed due to their cell membrane damage, untreated cells were clearly observed by a microscope. PEF-treated R. minuta was not stained by methylene blue due to cell membrane defect. When E. coli, B. subtilis and R. minuta were cultured after PEF treatment, they showed 5, 4, and 8 hr longer lag phase, respectively, compared to control, but growth rates were not affected.

  • PDF