• Title/Summary/Keyword: pulse distance

Search Result 310, Processing Time 0.035 seconds

Performance Experiment of the Angle Deception of Cross-Eye Jamming against a Monopulse Sensor (모노펄스 센서에 대한 크로스 아이 재밍기법의 각도기만 성능 실험)

  • Jang, Yeonsoo;Park, Jintae;Lee, Changhoon;Kim, In-sun;Kim, Ghiback;Cho, Sangwang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.146-149
    • /
    • 2018
  • A monopulse sensor is used to estimate the angle of a target with respect to each received single pulse. It is well known that the cross-eye technique can result in an angle deception effect against monopulse sensors. To verify this effect, we propose a test environment configuration for the angle deception using monopulse receiving antennae and cross-eye transmitters in an anechoic chamber. Using the proposed test environment configuration, we have measured powers of the sum and difference of the signals received by the monopulse receiving antennae when the distance of the two cross-eye transmitters is varied. Finally, the angle deception performance related to the powers of the sum and difference signals was analyzed.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

Performance of hybrid modulation for digital IoT doorlock system with color grid (컬러그리드기반 디지털 IoT 도어락 시스템을 위한 혼합변조의 성능)

  • Lee, Sun-Yui;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Yoon, Sung-Hoon;Cha, Jae-Sang;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2018
  • This paper presents implementation possibilities of digital IoT doorlock systems via VLC(Visible Light Communication)'s color grid. The color grid-based VLC modulation scheme which are discussed in this paper utilize the straightness of light and abundant frequency resources which are the properties of the light. Performance results in this paper are compared to that of conventional modulations with Bit Error Rate (BER) and Signal to Noise Ratio (SNR) simulations. With respect to a channel model, the proposed modulation schemes select the nearest Line Of Sight (LOS) except Non Line Of Sight (NLOS). Experiments in this paper show error rates of received symbols by changing power dB at a distance of 3m between Tx and Rx in an indoor environment. Through performance results and experiments, this paper demonstrates superiority of the proposed color grid-based modulation schemes.

Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP (최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성)

  • Shin, Seok-Hyun;Hwang, Do-Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2012
  • Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

The Use of Galvanostatic Pulse Transient Techniques for Assessing of Corrosion Rate of Reinforcing steel in Concrete (정전류 펄스법을 이용한 콘크리트 내 보강철근의 부식 연구)

  • So, Hyoung-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.785-793
    • /
    • 2007
  • An electrochemical transient response technique was used to study the corrosion of reinforcing steel bar in the concrete. Analysis of the transient electrochemical potential response in a corrosion interface to an applied current has enabled the separate components that make up the measured transient response to be isolated. These components display a range of resistances and capacitances, dependent on the corrosion conditions of the reinforcing steel, which may be attributed to the corrosion process, to effects within the concrete cover or to film effects on the surface of the concrete. In this technique, the corrosion rate was evaluated by summing all of the resistances in the separate components to obtain an aggregated corrosion resistance. However, it is possible that not all resistances identified are associated with the corrosion process. The results obtained show that the corrosion rates are significant dependent on the assignment of the separate components to either corrosion or to other processes. The assignment of resistive components associated with the corrosion rate can be clearly identified by taking a series of the transient measurement at different lateral distances from the corroding reinforcing steel. An inappropriate selection of measurement time however may result in an additional resistance, which is not associated with corrosion, being included or part of the resistance associated with corrosion being left out.

A Study on the Security of Infrastructure using fiber Optic Scattering Sensors (광섬유 산란형 센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2004
  • We have studied tile detection techniques, which can determine the location and the weight of an intruder into infrastructure, by using fiber-optic ROTDR (Rayleigh optical time domain reflectometry) sensor and fiber-optic BOTDA (Brillouin Optical time domain analysis) sensor, which can use an optical fiber longer than that of ROTDR sensor Fiber-optic sensing plates of ROTDR sensor, which arc buried in sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR could be used up to 10km at the pulse width of 30ns. The location error was less than 2 m and the weight could be detected as 4 grades, such as 20kgf, 40kgf, 60kgf and 80kgf. Also, fiber optic BOTDA sensor was developed to be able to detect intrusion effect through an optical fiber of tells of kilometers longer than ROTDR sensor. fiber-optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulate all intrusion effect. In the result of this experiment, the intrusion effort was well detected as the distance resolution of 3m through the fiber length of about 4.81km during 1.5 seconds.

Studies on the Transport of Acetic Acid by Electrodialysis (전기투석에 의한 초산의 이동특성 연구)

  • 최동민;구윤모
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.360-366
    • /
    • 1996
  • Electrodialysis of acetic acid was studied to find out the trend of the transport of organic acids through ultrafiltration and ion exchange membranes. The net transport rate of acetic acid was determined from the electro-migration velocity relative to the electro-osmotic flow rate through the membrane. Electro-osmosis flows through ultrafiltration membranes were from the anodic side to the cathodic side in the presence of electric field. The surface of ultrafiltration membrane was measured by the electro-osmotic flow to be charged negatively. Different transport behaviors of acetic acid were found with the ultrafiltration membranes of different materials. In general, regenerated cellulose membranes (YM series) were more effective than polysulfone membranes (PM series) for the transport of acetic acid. The transport of acetic acid was affected by electric strength, distance between the electrodes, surface area of electrode, temperature, and pore size of membrane. The transport rate through the ion exchange membrane was 1.5 to 3 times of those through the ultrafiltration membranes at the constant current of 150 mA in the experimental ranges. The transport rate of acetic acid through the ion exchange membrane increased by 10% with a pulse electric field of 10 sec/hr.

  • PDF

Space Debris Tracking Coverage Analysis of Spinning Disk for Optical Path Switch of Geochang Laser Tracking System (거창 레이저 추적 시스템의 광 경로 전환을 위한 회전 디스크의 우주쓰레기 레이저 추적 성능 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Yu, Sung-Yeol;Choi, Man-Soo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.391-399
    • /
    • 2020
  • KASI (Korea Astronomy and Space Science Institute) has been developing the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for scientific research and national space missions. The space debris laser tracking system provides the distance to space debris without a laser retro-reflector array by using a high power pulse laser, which employs a spinning disk to change the optical path between the transmit and receive beams. The spinning disk causes the collision band which is unable to reflect the returned signal to a detector and then has an effect on the tracking coverage of space debris. This study proposed the mathematical model for tracking coverage by taking into account the various specifications of spinning disk such as disk size, spinning velocity and collision rate between the disk and hole. In addition, the spinning disk specifications were analyzed in terms of tracking coverage and collision band based on the mathematical model to investigate tracking requirements of the Geochang laser tracking system.