• Title/Summary/Keyword: pulse arrival time

Search Result 50, Processing Time 0.032 seconds

The Hybrid Method of ToA and TDoA Using MHP Pulse in UWB System (UWB 시스템에서의 MHP 펄스를 이용한 ToA와 TDoA의 Hybrid 방식)

  • Hwang, Dae-Geun;Hwang, Jae-Ho;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2011
  • Recently, ToA and TDoA estimation are favorable among all of estimation techniques because they have the best accuracy in estimating position. ToA and TDoA estimation are typical techniques based on time. So, it is important to have the time syncronization and offset between a target node and several reference nodes. If they don't have the time syncronization between a reference node and target node or have a time offset among reference nodes, the positioning error will increase due to the ranging error. The conventional positioning algorithm does not have a accurate device's position because ranging error is added the calc dation of the position. In this paper, we propose a hybrid method of ToA and TDoA ll increase due. We use MHP pulse that has orthogonal pulse instead of the existing pulse to transmit and receive pulses between a target node and reference nodes. We can estimate the target node's position by ToA and TDoA estimation to transmit and receive MHP pulses only once. When the proposed Hybrid method iteratively calculate the distance, we can select the ranging technique to have more accurate position. The simulation results confirm the enhancement of the Hybrid method.

Identification Algorithm for Up/Down Sliding PRIs of Unidentified RADAR Pulses With Enhanced Electronic Protection (우수한 전자 보호 기능을 가진 미상 레이더 펄스의 상/하 슬라이딩 PRI 식별 알고리즘)

  • Lee, Yongsik;Kim, Jinsoo;Kim, Euigyoo;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.611-619
    • /
    • 2016
  • Success in modern war depends on electronic warfare. Therefore, It is very important to identify the kind of Radar PRI modulations in a lot of Radar electromagnetic waves. In this paper, I propose an algorithm to identify Linear up Sliding PRI, Non-Linear up Sliding PRI and Linear Down Sliding PRI, Non-Linear Down Sliding PRI among many Radar pulses. We applied not only the TDOA(Time Difference Of Arrival) concept of Radar pulse signals incoming to antennas but also a rising and falling curve characteristics of those PRI's. After making a program by such algorithm, we input each 40 data to those PRI's identification programs and as a result, those programs fully processed the data in according to expectations. In the future, those programs can be applied to the ESM, ELINT system.

A Detection Algorithm for Pulse Repetition Interval Sequence of Radar Signals based on Finite State Machine (유한 상태 머신 기반 레이더 신호의 펄스 반복 주기 검출 알고리즘)

  • Park, Sang-Hwan;Ju, Young-Kwan;Kim, Kwan-Tae;Jeon, Joongnam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.85-91
    • /
    • 2016
  • Typically, radar systems change the pulse repetition interval of their modulated signal in order to avoid detection. On the other hand the radar-signal detection system tries to detect the modulation pattern. The histogram or auto-correlation methods are usually used to detect the PRI pattern of the radar signal. However these methods tend to lost the sequence information of the PRI pulses. This paper proposes a PRI-sequence detection algorithm based on the finite-state machine that could detect not only the PRI pattern but also their sequence.

Development of Chair Backrest for Non-intrusive Simultaneous Measurement of ECG and BCG (심전도와 심탄도의 무구속적 동시 측정을 위한 의자 등받이 개발)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.104-109
    • /
    • 2018
  • A non-intrusive ECG and BCG measurement system is introduced. The system is built on a auxiliary backrest of a chair. The developed system is aimed to non-intrusive assessment of cardiovascular dynamic indices such as pulse arrival time(PAT) and pre-ejection period (PEP). In the system, capacitive active electrodes and capacitive grounding were used for the non-intrusive indirect-contact ECG measurement, and EMFi pressure sensor was used for the non-intrusive BCG measurement. The capacitive active electrodes and the EMFi sensor were attached on the backrest. Using the system, ECG and BCG were successfully acquired. The measured BCG showed peaks that following ECG R peaks. It was shown that the time interval between Q wave in ECG and first peak in BCG correlates Pre-ejection period measured by impedance-cardiogram. The results showed that the introduced system can be used for the non-intrusive various cardiovascular information including ECG, PAT, PEP.

QRS Detection based on Maximum A-Posterior Estimation (MAP Estimation을 이용한 QRS Detection)

  • 정희교;신건수
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-214
    • /
    • 1987
  • In this paper, a mathmatical model for the purpose of QRS detection is considered in the case of the occurence of nonoverlappjng pulse-shaped waveforms corrupted with white noise. The number of waveform, the arrival times, amplitudes, and widths of QRS complexes are regarded as random variables. The joint MAP estimation of all the unknown Quantities consists of linear filtering followed by an optimization procedure. Because the optimization procedure is time-consuming, this procedure is modified so that a threshold test is obtained.

  • PDF

Asynchronous IR-UWB ranging system (비동기 IR-UWB 레인징 시스템)

  • Choi, You-Shin;Yang, Hoon-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.587-594
    • /
    • 2010
  • In this paper, we propose an asynchronous IR-UWB ranging system based on the two-way ranging protocol. The periodic pulse sequence is used to measure a distance between two devices. At the receiver, a received signal is first transformed into a frequency-domain signal using an analog correlator bank and digital signal processing is followed in the frequency-domain. This make it possible for the system to use an ADC with a conversion speed of pulse rate. The proposed algorithm at the receiver side includes a peak detection procedure using mutipath channel compensation and matched filtering, and retransmits a pulse sequence synchronized with the detected peak. The validity of the proposed algorithm is verified from simulation results where the CM1 channel is assumed.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

Analysis of PRI Pattern with the Second Deviation of LASER Pulse Train (레이저 펄스열의 2차 차분을 이용한 PRI 패턴 분석)

  • Lim, Joong-Soo;Hong, Kyung-Ho;Jun, Gab-Song;Moon, Sung-Chul;Lee, Chang-Jae;Suh, Suhk-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.4
    • /
    • pp.63-70
    • /
    • 2008
  • This paper presents a method of PRI do-interleaving for LASER pulse signals. When the PRI of LASER pulse is periodically changed, the first deviation and the second deviation of TOA is used to calculate the PRI pattern of input LASER signals of receiver. If the standard deviation of the first difference of TOA is less than 5% of the average of the first difference of TOA, the PRI pattern of LASER signal is fixed or jittered type. If the standard deviation is larger than 5% of the average, those are triangular PRI patterns or sawtooth PRI patterns.

A Ranging Algorithm for IR-UWB in Multi-Path Environment Using Gamma Distribution (IR-UWB의 다중경로 환경에서감마분포를 이용한 거리 추정 알고리즘)

  • Kim, Jin-Ho;Kim, Hyeong-Seok;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.146-153
    • /
    • 2013
  • The IR-UWB radar system radiates a pulse whose width is several hundred pico sec at Tx antenna and check the time to receive the pulse that reflected from target to measure the TOA. In this paper, we present a new algorithm which supplement the conventional ranging algorithm for more accurate estimation. We get received signal data using IR-UWB Radar module which equipped a NVA6000 UWB Transceiver and analysis the data of multi-path. Consequently, we found the property of UWB multi-path signal, which best fit a Gamma distribution. so we present a algorithm using Gamma-distribution and compared a performance with conventional ranging algorithm.

Analysis of cross-borehole pulse radar signatures measured at various tunnel angles (다양한 투과 각도에서 측정된 투과형 펄스 시추공 레이더 신호 분석)

  • Kim, Sang-Wook;Kim, Se-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.96-101
    • /
    • 2010
  • A pulse radar system has been developed recently to detect dormant underground tunnels that are deeply located at depths of hundreds of metres. To check the ability of the radar system to detect an obliquely oriented tunnel, five different borehole pairs in the tunnel test site were chosen so that the horizontal lines-of-sight cut the tunnel axis obliquely, in $15^{\circ}$ steps. The pulse radar signatures were measured over a depth range of 20 m around the centre of the air-filled tunnel. Three canonical parameters, consisting of the arrival time, attenuation, and dispersion time were extracted from the first and second peaks of the measured radar signatures. Using those parameters, the radar system can detect obliquely oriented tunnels at various angles up to 45 from the transmitter-receiver line of sight.