• Title/Summary/Keyword: pulsations of a cavity

Search Result 4, Processing Time 0.019 seconds

Process of pulsations of the spherical cavity in a liquid under the influence of ultrasonic vibrations

  • Kuznetsova, Elena L.;Starovoitov, Eduard I.;Vakhneev, Sergey;Kutina, Elena V.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The process of pulsation of a cavitation pocket in liquid is investigated. The Kirkwood-Bethe model was used to describe the motion. A numerical solution algorithm based on the Runge-Kutta-Felberg method of 4-5th order with adaptive selection of the integration step has been developed and implemented. It was revealed that if the initial bubble radius exceeds a certain value, then the bubble will perform several pulsations until the moment of collapse. The same applies to the case of exceeding the amplitude of ultrasonic vibrations of a certain value. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies and to evaluate the influence of various process parameters on the intensity of cavitation.

Responses of the Plasmasphere to Impulsive Disturbance in the Magnetotail

  • Lee, Dong-Hun
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 1997
  • We present a theoretical study on how the plasmasphere responses to the sudden impulses in the magnetosphere. A mechanism on how Pi 2 pulsations are excited in the magnetosphere is also proposed. When impulsive disturbances associated with the substorm onset are assumed in the magnetotail, their propagation toward the sunward direction is investigated with a wave equation. The propagation speed undergoes serious variations owing to the existence of the plasmasphere, which results in various reflection and tunneling of traveling disturbances at the plasmapause. In order to examine the effect of the plasmapause on initial impulsive disturbances, we analytically solve the wave equation based on the model of reasonable Alfven speed profile. The exact solution shows that virtual resonant states exist inside the plasmaspheric cavity. We obtain the result that these unique modes strongly persist for arbitrary incoming impulses from the source in the magnetotail, which quantitatively corresponds to the signature of PI 2 pulsations.

  • PDF

SIMULTANEOUS OBSERVATIONS OF PI 2 PULSATIONS ON THE SATELLITE AND GROUND-BASED MEASUREMENTS (위성 및 지상자력계에서의 PI 2 파동 동시 관측)

  • 이성환;이동훈;김관혁
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • We have investigated Pi 2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, Pi 2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI) were located near the magnetic meridian of the 210 array. The local time of measurements covers from morning(LT=8.47hr) to afternoon(LT=20.3hr) and the bandwidth of peak frequency is found relatively small. The signals of the electric field are highly coherent with ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60) shows no signature of Pi 2 pulsations over the same time interval and the correlation with any of the ground-based stations is found to be very weak, even through both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi 2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996). The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  • PDF

Effect of varying the coupling strength and section length on the self-pulsation characteristics of multisection index-coupled DFB lasers (다중 전극 Index-Coupled DFB 레이저에서 결합 세기 및 각 영역의 길이가 Self-Pulsation 동작 특성에 미치는 영향)

  • Kim, Sang-Taek;Kim, Tae-Young;Ji, Sung-Keun;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.85-98
    • /
    • 2005
  • As the number of compound cavity modes within the stopband of DFB sections decreases, the frequency of mode hopping decreases for the variation of $\Delta$λ$_{B}$, which represents the difference between the Bragg wavelengths of two DFB sections, so that the number of abrupt changes of pulsation frequencies decreases. In addition, the pulsation frequency varies continuously for the variation of the phase in a phase tuning section for a fixed $\Delta$λ$_{B}$. The number of compound cavity modes within the stopband decreases as the length of DFB sections increases and the length of a phase tuning section decreases. Thus stable self-pulsation operations for the variation of $\Delta$λ$_{B}$ and the phase in a phase tuning section could be obtained by proper selection of the coupling strength and the length of each section.ction.