• 제목/요약/키워드: pulsars

검색결과 37건 처리시간 0.032초

Pulsar observation with KVN

  • Kim, Chunglee;Dodson, Richard;Jung, Taehyun;Sohn, Bong Won
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.52.1-52.1
    • /
    • 2014
  • Radio pulsars are highly magnetized, rapidly rotating neutron stars that emit synchrotron radiation along the magnetic axes at their spin frequencies. Traditionally, pulsar observations have been done at low frequencies (MHz up to a few GHz), since radio pulsar spectrum is known to a power-law with a steep negative spectral index. More recently, high-frequency pulsar observations (several GHz and above) have been made as a broadband spectrometer and fast computers became available. High-frequency pulsar observations will provide information on radio emission mechanism of pulsars in the vicinity of the neutron star surface. There is also huge interest from gravitational-wave and astrophysics community to find a pulsar in the center of our Galaxy. The Korean VLBI Network has three 21-m single dishes in the Korean peninsula. Using KVN's lowest observational frequency of 22-GHz, we performed test observations with the KVN targeting a few selected known, bright pulsars. In addition, we have been developing pulsar pipelines that can be utilized with a VLBI facility using Mark-V. We present a brief introduction of radio pulsars and show data obtained with the KVN.

  • PDF

Theoretical Study of Gamma-ray Pulsars

  • Song, Yuzhe;Cheng, Kwong Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.69-73
    • /
    • 2016
  • We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phase-averaged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

MEASURING TIMING PROPERTIES OF PSR B0540-69

  • Kim, Minjun;An, Hongjun
    • 천문학회지
    • /
    • 제52권2호
    • /
    • pp.41-47
    • /
    • 2019
  • We report on the timing properties of the 'Crab twin' pulsar PSR B0540-69 measured with X-ray data taken with the Swift telescope over a period of 1100 days. The braking index of the pulsar was estimated to be $n=0.03{\pm}0.013$ in a previous study performed in 2015 with 500-day Swift data. This small value of n is unusual for pulsars, and a comparison with an old estimate of $n{\approx}2.1$ for the same target determined ~10 years earlier suggests a dramatic change in the braking index. To confirm the small value and therefore the large change of n, we used 1100-day Swift observations including the data used in the earlier determination of n = 0.03. In this study we find that the braking index of PSR B0540-69 is $n=0.163{\pm}0.001$, somewhat larger than 0.03. Since the measured value of n is still much smaller than 2.1, we can confirm the dramatic change in the braking index for this pulsar.

Timing analysis for the magnetar-like pulsar, PSR J1119-6127

  • Lin, Chun-Che Lupin;Hui, C.Y.
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.55.1-55.1
    • /
    • 2018
  • Studies on rotation-powered pulsars with strong surface magnetic field may help us clarify the unclear link between magnetars and canonical radio pulsars because the magnetar-like emission is expected to be observed. PSR J1119-6127 associated with SNR G292.2-0.5 has a high magnetic field of $4.1{\times}1013$ gauss, and a young characteristic age of ~1700 years can be served as the good candidate to compare with magnetars and rotation-powered pulsars. The glitch accompanied by the radiative changes detected in 2007 is the first case we observed for a rotationally powered radio pulsar. This pulsar experienced magnetar-like outbursts in mid. 2016, similar to the 2006 transition occurred on the other radio-quiet rotation-powered pulsar with strong surface magnetic field, PSR J1846-0258. In this talk, I'll report the investigation with X-ray and gamma-ray data of this magnetar-like pulsar. A sudden decrease in the gamma-ray emission at the GeV band was detected immediately after the X-ray outburst. Accompanying with the disappearance of the radio pulsation, the gamma-ray pulsation cannot be resolved as well after the outburst. We tried to derive the timing behavior and some intriguing features of this pulsar in this work corresponding to the outburst using the Swift data, NuSTAR and XMM observations.

  • PDF

Spider Invasion Across the Galaxy

  • Hui, Chung-Yue
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권2호
    • /
    • pp.101-120
    • /
    • 2014
  • The nature of the exotic stellar corpses which reincarnate by consuming their companion is reviewed. Apart from sucking life from their partners, they are actually eating the doomed companions away by their deadly and powerful particle/radiation beams. Such situation resembles that a female "black widow" spider that eats its mate after mating. These celestial zombies are called - Millisecond pulsars (MSPs). In this review article, I will focus on the effort of Fermi Asian Network (FAN) in exploring these intricating objects over the last five years. Two special classes of MSPs are particularly striking. Since Fermi Gamma-ray Space Telescope has started surveying the gamma-ray sky, the population of "black widows" has been boosted. Another dramatic class is so-called "redbacks" (Australian cousin of "black widows") which has just emerged in the last few years. These MSPs provide us with a long-sought missing link in understanding the transition between accretion-powered and rotation-powered systems. The strategy of hunting MSPs through mulitwavelength observations of the unidentified Fermi objects is also reviewed.

Pulsar Binary Birthrates with Spin-Opening Angle Correlations

  • Kim, Chung-Lee;O'Shaughnessy, Richard
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • One ingredient in an empirical birthrate estimate for pulsar binaries is the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's beam geometry defined by the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. The current estimates for pulsar binary birthrates are based on an average value of beaming fractions for only two pulsars, i.e., PSRs B1913+16 and B1534+12. In this work, we revisit the observed pulsar binaries to examine the sensitivity of birthrate predictions to different assumptions regarding the pulsar beam geometry. The results show that, for those pulsars without any direct beam geometry constraints, the estimated beaming correction factor is likely to be smaller than six, a canonically adopted value when calculating birthrates of Galactic pulsar binaries. The median birthrate estimates for pulsar-white dwarf and pulsar-neutron star binaries in the Galactic disk, based on the best observational constraints, are 34 per Myr and 89 per Myr, respectively.

  • PDF

THE PARKES PULSAR TIMING ARRAY PROJECT

  • HOBBS, GEORGE
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.577-581
    • /
    • 2015
  • The main goals of the Parkes Pulsar Timing Array (PPTA) project are to 1) detect ultra-low-frequency gravitational waves, 2) improve the solar system planetary ephemeris and 3) provide a long-term, stable time standard. In this paper, we highlight the main results from the project so far and discuss our expectations for the future.

GRAVITATIONAL WAVES: SOURCES AND DETECTORS

  • DHURANDHAR S. V.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.273-276
    • /
    • 1996
  • The world wide efforts for detecting gravitational waves, the detectors in vogue and the expected astrophysical sources of gravitational waves will be discussed. Ground based detectors especially, the resonant bar detectors and laser interferometers will be described with a brief mention of the space based detector (the LISA project). Astrophysical sources of gravitational waves such as coalescing binaries, supernovae, pulsars/ rotating neutron stars, stochastic background will be discussed in the context of detection.

  • PDF

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.