DOI QR코드

DOI QR Code

THE PARKES PULSAR TIMING ARRAY PROJECT

  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

The main goals of the Parkes Pulsar Timing Array (PPTA) project are to 1) detect ultra-low-frequency gravitational waves, 2) improve the solar system planetary ephemeris and 3) provide a long-term, stable time standard. In this paper, we highlight the main results from the project so far and discuss our expectations for the future.

Keywords

References

  1. Champion, D., Hobbs, G., & Manchester, R. N., et al., 2010, Measuring the Mass of Solar System Planets Using Pulsar Timing, ApJ, 720, 201 https://doi.org/10.1088/2041-8205/720/2/L201
  2. Coles, W., Hobbs, G., & Champion, D. J., et al., 2011, Pulsar Timing Analysis in the Presence of Correlated Noise, MNRAS, 418, 561 https://doi.org/10.1111/j.1365-2966.2011.19505.x
  3. Detweiler, S., 1979, Pulsar Timing Measurements and the Search for Gravitational Wwaves, ApJ, 234, 1100 https://doi.org/10.1086/157593
  4. Demorest, P. B., Ferdman, R. D., & Gonzalez, M. E., et al., 2013, Limits on the Stochastic Gravitational Wave Back-ground from the North American Nanohertz Observatory for Gravitational Waves, ApJ, 762, 94 https://doi.org/10.1088/0004-637X/762/2/94
  5. Deng, X. P., Coles, W., & Hobbs, G. B. et al., 2012, Optimal Interpolation and Prediction in Pulsar Timing, MNRAS, 424, 244 https://doi.org/10.1111/j.1365-2966.2012.21189.x
  6. Deng, X. P., Hobbs, G. B., & You, X. P., 2013, Interplanetary Spacecraft Navigation Using Pulsars, AdSpR, 52, 1602
  7. Edwards, R. T., Hobbs, G. B., & Manchester, R. N., 2006, TEMPO2, a New Pulsar Timing Package - II. The Timing Model and Precision Estimates, MNRAS, 372, 1549 https://doi.org/10.1111/j.1365-2966.2006.10870.x
  8. Hobbs, G., Edwards, R., & Manchester, R. N., 2006, TEMPO2, a New Pulsar-timing Package - I. An Overview, MNRAS, 369, 655 https://doi.org/10.1111/j.1365-2966.2006.10302.x
  9. Hobbs, G., et al., 2011, The Parkes Observatory Pulsar Data Archive, PASA, 28, 202 https://doi.org/10.1071/AS11016
  10. Hobbs, G., Coles, W., & Manchester, R. N., et al., 2012, Development of a Pulsar-based Time-scale, MNRAS, 427, 2780 https://doi.org/10.1111/j.1365-2966.2012.21946.x
  11. Hobbs, G., 2012, The Parkes Pulsar Timing Array: What We've Done and What We're Doing, arXiv, 1210, 0977
  12. Hobbs, G., Dai, S., & Manchester, R. N., et al., 2014, The Role of FAST in Pulsar Timing Arrays, arXiv, 1407, 0435
  13. Hotan, A., van Straten, W., & Manchester, R. N., 2004, PSRCHIVE and PSRFITS: An Open Approach to Radio Pulsar Data Storage and Analysis, PASA, 21, 302 https://doi.org/10.1071/AS04022
  14. Jenet, F. A., Hobbs, G. B., Lee, K. J., & Manchester, R. N., 2005, Detecting the Stochastic Gravitational Wave Back-ground Using Pulsar Timing, ApJ, 625, L123 https://doi.org/10.1086/431220
  15. Jenet, F. A., Hobbs, G. B., & van Straten, W., et al., 2006, Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects, ApJ, 653, 1571 https://doi.org/10.1086/508702
  16. Keith, M., Coles, W., & Hobbs, G. B., et al., 2013, Measurement and Correction of Variations in Interstellar Dispersion in High-precision Pulsar Timing, MNRAS, 429, 2161 https://doi.org/10.1093/mnras/sts486
  17. Kramer, M. & Champion, D. J., 2013, The European Pulsar Timing Array and the Large European Array for Pulsars, CQGra, 30, 4009
  18. Lazio, T. J. W., 2013, The Square Kilometre Array Pulsar Timing Array, CQGra, 30, 4011
  19. Lentati, L., Alexander, P., & Hobson, M. P., et al., 2014, TEMPONEST: a Bayesian Approach to Pulsar Timing Analysis, MNRAS, 437, 3004 https://doi.org/10.1093/mnras/stt2122
  20. Manchester, R., Hobbs, G. B., & Bailes,M., et al., 2013a, The Parkes Pulsar Timing Array Project, PASA, 30, 17 https://doi.org/10.1017/pasa.2012.017
  21. Manchester, R., et al., 2013b, The International Pulsar Timing Array, CQGra, 30, 4010
  22. McLaughlin, M. A., 2013, The North American Nanohertz Observatory for Gravitational Waves, CQGra, 30, 4008
  23. Oslowski, S., van Straten, & Hobbs, G., et al., 2011, High Signal-to-noise Ratio Observations and the Ultimate Limits of Precision Pulsar Timing, MNRAS, 418, 1258 https://doi.org/10.1111/j.1365-2966.2011.19578.x
  24. Oslowski, S., van Straten, Demorest, P., W., & Bailes, M., 2013, Improving the Precision of Pulsar Timing Through Polarization Statistics, MNRAS, 430, 416 https://doi.org/10.1093/mnras/sts662
  25. Ravi, V., Wyithe, J. S. B., Shannon, R., & Hobbs, G., 2014a, MNRAS, 447, 2772
  26. Ravi, V., Wyithe, J. S. B., Shannon, R., Hobbs, G., & Manchester, R., 2014b, Binary Supermassive Black Hole Environments Diminish the Gravitational Wave Signal in the Pulsar Timing Band, MNRAS, 442, 56 https://doi.org/10.1093/mnras/stu779
  27. Sanidas, S. A., Battye, R. A., & Stappers, B. W., 2012, Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array, PhRvD, 85, 2003
  28. Sesana, A., Vecchio, A., & Colacino, C. N., 2008, The Stochastic Gravitational-wave Background from Massive Black Hole Binary Systems: Implications for Observations with Pulsar Timing Arrays, MNRAS, 390, 192 https://doi.org/10.1111/j.1365-2966.2008.13682.x
  29. Sesana A., Vecchio A., & Volonteri M., 2009, Gravitational Waves from Resolvable Massive Black Hole Binary Systems and Observations with Pulsar Timing Arrays, MNRAS, 394, 2255 https://doi.org/10.1111/j.1365-2966.2009.14499.x
  30. Shannon, R. M., Ravi, V., & Coles, W. A., et al., 2013, Gravitational-wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution, Science, 342, 334 https://doi.org/10.1126/science.1238012
  31. Shannon, R. M., Os lowski, S., & Dai, S., et al., 2014, Limitations in Timing Precision due to Single-pulse Shape Variability in Millisecond Pulsars, MNRAS, 443, 1463 https://doi.org/10.1093/mnras/stu1213
  32. van Haasteren, R., Levin Y., & Janssen, G., H., et al., 2011, Placing Limits on the Stochastic Gravitational-wave Back-ground Using European Pulsar Timing Array Data, MNRAS, 414, 3117 https://doi.org/10.1111/j.1365-2966.2011.18613.x
  33. van Straten, W., 2013, High-fidelity Radio Astronomical Polarimetry Using a Millisecond Pulsar as a Polarized Reference Source, ApJS, 204, 13 https://doi.org/10.1088/0067-0049/204/1/13
  34. Verbiest, J. P. W., Bailes, M., & Coles, W. A., et al., 2009, Timing Stability of Millisecond Pulsars and Prospects for Gravitational-wave Detection, MNRAS, 400, 951 https://doi.org/10.1111/j.1365-2966.2009.15508.x
  35. Yan, W. M., Manchester, R. N., & van Straten, W., et al., 2011, Polarization Observations of 20 Millisecond Pulsars, MNRAS, 414, 2087 https://doi.org/10.1111/j.1365-2966.2011.18522.x
  36. Yardley, D. R. B., Coles, W. A., & Hobbs, G. B., et al., 2011, On Detection of the Stochastic Gravitational-wave Back-ground Using the Parkes Pulsar Timing Array, MNRAS, 414, 1777 https://doi.org/10.1111/j.1365-2966.2011.18517.x
  37. Yardley, D. R. B., Hobbs, G. B., & Jenet, F. A., et al., 2010, The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves, MNRAS, 407, 669 https://doi.org/10.1111/j.1365-2966.2010.16949.x
  38. You, X. -P., Hobbs, G., Coles, W. A., Manchester, R. N., & Han, J. L., 2007, An Improved Solar Wind Electron Density Model for Pulsar Timing, ApJ, 671, 907 https://doi.org/10.1086/522227
  39. You, X. -P., Coles, W. A., Hobbs, G., & Manchester, R. N., 2012, Measurement of the Electron Density and Magnetic Field of the Solar Wind Using Millisecond Pulsars, MNRAS, 422, 1160 https://doi.org/10.1111/j.1365-2966.2012.20688.x
  40. Zhu, X. -J. Hobbs, G., & Wen, L., et al., 2014, MNRAS, 444, 3709 https://doi.org/10.1093/mnras/stu1717