• 제목/요약/키워드: pulp and paper

검색결과 2,562건 처리시간 0.029초

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

Bonding agent의 치수 섬유아세포에 대한 독성 연구 (THE CYTOTOXIC EFFECTS OF BONDING AGENTS ON THE HUMAN PULP FIBROBLASTS)

  • 박선희;민병순;최호영;박상진;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제16권2호
    • /
    • pp.99-117
    • /
    • 1991
  • The purpose of this study is to evaluate the effects of dentin bonding agents on the fibroblasts cultivated from human pulp tissue. The fibroblasts were cultured in DMEM/10%FBS medium. Whatman filter paper discs (6mm diameter) soaked with $2{\mu}l$ of dentin bonding agents were placed on a millipore filter (pore size $0.22{\mu}m$) contained in a 50mm Petri dish, and then, exposed for 10 minutes, 30 minutes, 1 hour, 6 hours, 12 hours, 24 hours, 4 days and 7 days in $37.^{\circ}C$, 5% $CO_2$ incubator. The results of the experiments were analyzed by counting the cells and measuring the protein contents at 1 day, 4 days and 7 days. The results of this study were as follows: l. CLEARFIL NEW BOND, LITE-FIL BOND, GLUMA 3 Primer and GLUMA 4 Sealer showed cytotoxicity compared to the control group in the cell counts and the protein contents. 2. GLUMA 4 Sealer showed the least cytotoxicity among the three dentin bonding agents. 3. The results of the cell count were simialr to the results of protein content measurement. 4. LITE-FIL BOND exhibited marked cytotoxicity during 1 day, but, the cytotoxicity was slightly reduced after 4 and 7 days. 5. In GLUMA 3 Primer group, it was not possible to count the cell numbers and measure the protein contents, but the degeneration of cells was observed under the inverted phase-contrast microscope.

  • PDF

대용섬유자원으로써 어저귀를 이용한 한지제조(제2보) -인피 및 목질부 섬유를 이용한 한지 제조- (Manufacturing of Korean Paper(Hanji) with Indian Mallow (Abutilon avicennae Gaertner) as the Alternative Fiber Resources(II) - Manufacturing of The Hajis Made from Bast Fiber and woody core fibers -)

  • 정선화;조남석;최태호
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권1호
    • /
    • pp.1-8
    • /
    • 2004
  • 생장속도가 빨라서 단위면적당 Biomass의 생산량이 많은 어저귀(Indian mallow, Abutilon avicennae G.)를 원료로 하여 펄프화하였으며, 제조한 한지의 물리적·기계적·현미경적 특성에 관하여 비교 검토하였다. 제조한 한지의 특성을 살펴보면 광학적, 강도적, 현미경적인 특성에서 설포메틸 펄프화법이 우수한 결과를 나타냈고, 장섬유인 인피부 펄프에 대한 단섬유인 목질부 펄프의 혼입량 증가에 따른 변화에 있어 지질(밀도, 백색도, 불투명도, 지합)의 변화는 점차 증가했으나, 강도는 감소하는 경향을 나타냈다.

Enzymatic Hydrolysis Performance of Biomass by the Addition of a Lignin Based Biosurfactant

  • FATRIASARI, Widya;NURHAMZAH, Fajar;RANIYA, Rika;LAKSANA, R.Permana Budi;ANITA, Sita Heris;ISWANTO, Apri Heri;HERMIATI, Euis
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.651-665
    • /
    • 2020
  • Hydrolysis of biomass for the production of fermentable sugar can be improved by the addition of surfactants. In pulp and paper mills, lignin, which is a by-product of the pulping process, can be utilized as a fine chemical. In the hydrolysis process, lignin is one of the major inhibitors of the enzymatic breakdown cellulose into sugar monomer. Therefore, the conversion of lignin into a biosurfactant offers the opportunity to solve the waste problem and improve hydrolysis efficiency. In this study, lignin derivatives, a biosurfactant, was applied to enzymatic hydrolysis of various lignocellulosic biomass. This Biosurfactant can be prepared by reacting lignin with a hydrophilic polymer such as polyethylene glycol diglycidylethers (PEDGE). In this study, the effect of biosurfactants on the enzymatic hydrolysis of pretreated sweet sorghum bagasse (SSB), oil palm empty fruit bunch, and sugarcane trash with different lignin contents was investigated. The results show that lignin derivatives improve the enzymatic hydrolysis of the pretreated biomass with low lignin content, however, it has less influence on the enzymatic hydrolysis of other pretreated biomass with lignin content higher than 10% (w/w). The use of biosurfactant on SSB kraft pulp can increase the sugar yield from 45.57% to 81.49%.

Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils

  • Masruchin, Nanang;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.613-627
    • /
    • 2015
  • Simple methods of conductometric titration and infrared spectroscopy were used to quantify the surface carboxyl content of cellulose fibrils isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The effects of different cellulose sources, post or assisted-sonication oxidation treatment, and the amount of sodium hypochlorite addition on the carboxyl content of cellulose were reported. This study showed that post sonication treatment had no influence on the improvement of surface carboxyl charge of cellulose macrofibrils (CMFs). However, the carboxyl content increased for the isolated cellulose nanofibrils (CNFs). Thus the carboxyl content of CNFs is different from those of their corresponding bulk oxidized cellulose and CMFs. Filter paper as a CNF source imparted a higher surface charge than did hardwood bleached kraft pulp (HWBKP) and microcrystalline cellulose (MCC). It was considered that the crystallinity and microstructure of the initial cellulose affected oxidation efficiency. In addition, the carboxyl content of cellulose was successfully controlled by applying sonication treatment during the oxidation reaction and adjusting the amount of sodium hypochlorite.

Paper Recycling of South Korea and its Effects on Greenhouse Gas Emission Reduction and Forest Conservation

  • Cha, Junhee;YOUN, Yeo-Chang
    • 한국산림과학회지
    • /
    • 제97권5호
    • /
    • pp.530-539
    • /
    • 2008
  • The study evaluates the greenhouse gas (GHG) reduction potential of paper recycling by paper industry in South Korea and determines the positive impact on global warming by conserving the world's forests through decreasing pulp wood use. South Korea is one of the leading countries in the world thai recycle papers with a collection rate of 71.8 percent and a recycling rate of 74.4 percent in 2005. Greenhouse gas emission reduction potential in terms of carbon dioxide ($CO_2$) equivalent from paper recycling was assessed scientifically by the use of Life Cycle Assessment (LCA). Three types of papers including newsprint, container-board, and white-board were used for assessment in this study. Results of this study indicate that $CO_2$ emission reduction potential of recycling paper varies according to its types and recycling rates. Greenhouse gas emission reduction factor of 0.74869 $tCO_2$ per ton of recycled paper was derived from this study. In applying this factor. it was found out that the South Korean paper industry reduced GHG emission of around 6,364,550 $tCO_2$ by recycling paper in 2005. With this. the country's paper industry could claim that by recycling in thai particular year. approximately $23.8million\;m^3$ of woods were not harvested and thus 212,500 ha of world's forests were estimated to be saved in that particular year. Overall. it could be concluded that the Korean paper industry was able to reduce $CO_2$ emission and was able to conserve world's forests by its high rates of paper recycling.

다층지의 내부응력과 물성 (Internal Stress and Physical Properties of Multi-layered Paper)

  • 원종명
    • Journal of Forest and Environmental Science
    • /
    • 제14권1호
    • /
    • pp.89-100
    • /
    • 1998
  • 본 연구는 제지 원료의 효율적 이용 및 기능의 최적화를 위한 수단으로 사용되고 있는 다층구조화에 따른 종이의 내부응력 및 물성의 변화를 조사하기 위하여 수행되었다. 또한 최근 사용량이 급증되고 있는 재생섬유를 다층구조에 도입할 경우 수반되는 종이의 물성 변화도 조사되었다. 펄프의 고해처리는 단층지의 내부응력을 증가시켜준 반면 충전제의 사용은 내부응력을 감소시켰다. 종이의 다층구조화는 인열지수를 제외한 대부분의 종이물성과 내부응력을 감소시켰으며, 이러한 변화는 사용된 펄프의 종류, 고해수준, 원료의 배합 방법에 따라 다양하게 나타났다. 충전시에는 충전제를 외층 또는 내층에 사용함으로써 단층지보다 우수한 내부응력 및 종이물성을 얻을 수 있었다. 재생섬유를 사용할 때는 다층구조화를 통하여 투기도와 빳빳이의 개선이 가능하였으나, 파열지수가 감소되었다.

  • PDF

습식 인공열화 시 밀랍본 복제품의 제책 부위별 열화특성 (Studies on the Aging Characteristics in Different Parts of Beeswax-treated Duplicates during Humidified Artificial Aging)

  • 최경화;조정혜;강영석;양은정;정혜영
    • 펄프종이기술
    • /
    • 제44권5호
    • /
    • pp.72-79
    • /
    • 2012
  • In this study, to understand the aging factor and mechanism in different partitions of the beeswax-treated volumes, the duplicated beeswax-treated volume was artificially aged at $80^{\circ}C$ of temperature and 65% of relative humidity and then a physical and optical properties of an aged volumes was analyzed. Also, the degraded components of the beeswax samples isolated from different partitions of aged volumes was measured using a gas chromatography/mass spectroscopy (GC/MS). In results, the surface of beeswax-treated volume which is primarily affected by a main aging factors such as light, oxygen, moisture was more deteriorated than the inside of that volume. However, unlike inside of the book volume which was made from paper, the inside of beeswax-treated volume wax was also considerably deteriorated. The inside of the beeswax-treated volume is largely unaffected by the oxygen and humidity during aging due to the water repellency and the air permeation resistance of beeswax. Therefore, it is confirmed that aging factors and mechanisms in the inside of the volume are different from thats of the outside of the volume. This fact was also verified by the results of GC/MS analysis of an beeswax samples which was sampled from different partitions of aged volumes. As result as GC/MS analysis of the beeswax extracted from the outside of the aged volume, the low molecular compounds with a carbon length of $C_9-C_{20}$ (fatty acid, etc) were increased and the compounds with a carbon length of above $C_{34}$ (ester, etc) were also increased. But the compounds with a chain length of $C_{21}-C_{36}$ (hydrocarbon, alcohol, etc) were decreased. In case of the aged beeswax of inside, the low molecular compounds with a carbon length of $C_9-C_{20}$ (fatty acid, etc) and the compounds with a chain length of $C_{21}-C_{36}$ (hydrocarbon, alcohol, etc) were increased. While, the compounds with a carbon length of above $C_{34}$ (ester, etc) were decreased.

제지용(製紙用) 섬유(纖維)의 화학적(化學的) 개질(改質)에 관한 연구(硏究) (I) - Partial Carboxymethylation 처리에 의한 물성(物性) 향상(向上) - (A Study on Chemical Modification of Papermaking Fibers (I) - Improved Physical Characteristics from Partial Carboxymethylated Pulps -)

  • 최정헌;조병묵;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.37-46
    • /
    • 1995
  • The substitution of carboxymethylated hydroxyl group in pulp revealed more hydrophilic than hydroxyl group. And then fibers were more flexible, swell more which leads to better conformation between fibers in turn this raise paper strength. In this paper, we tried to chemical modifyings of recycled fiber, OCCs(old corrugated containers). Many researchers have examined chemical modification of papermaking fiber by partial carboxymethylation(PCM) using a organic solvent processes. We made modified PCM processes adapted waters m replace of the organic solvent. Our testings for the optimum conditions on the new method, conditions as reaction time, temperature, liquor ratios were designed likely plant system. Freenesses(SR$^{\circ}$) were increased following on carboxyl content of the samples. Handsheets of untreated samples and partial carboxymethylated OCCs were made by optimum conditions on different concentrations of the reagent. As results, maximum 25% strength increasing effects were obtained by the new method.

  • PDF