• Title/Summary/Keyword: pullout capacity

Search Result 118, Processing Time 0.025 seconds

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

Behavior and Capacity of Compression Lap Splice in Unconfined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.291-302
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. New criteria for the compression lap splice including the effects of concrete strength are required for practical purpose of ultra-high strength concrete. Characteristics of compression lap splice have been extensively investigated and main parameters are derived. In addition, an experimental study has been conducted with column specimens in concrete strength of 40 and 60 MPa. The strength of the compression lap splice consists of bond and end bearing and two contributors are combined. Therefore, combined action of bond and end bearing should be assessed. Compared with tension splices, concrete strength significantly affects the strength of compression splices due to short splice length and existence of end bearing. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. The stress states of concrete surrounding spliced bars govern the strengths of bond and end bearing. Because the axial stress of the concrete is relatively high, the splice strength is not dependent on clear spacing. End bearing strength is not affected by splice length and clear spacing and is expressed with a function of the square root of concrete strength. The failure mode of specimens is similar to side-face blowout of pullout test of anchors and the strength of end bearing can be evaluated using the equation of side-face blowout strength. Because the stresses developed by bond in compression splices are nearly identical to those in tension splices, strength increment of compression splices is attributed to end bearing only.

Laboratory and Full-scale Testing to Investigate the Performance of Rock Fall Protection System with Hexagonal Wire Net (육각 낙석방지망의 성능평가를 위한 실내 및 실대형실험)

  • Youn, Ilro;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.69-75
    • /
    • 2014
  • Rock fall protection system installed against rock slope is one of the most conventional way to protect nearby infra structures. Despite of wide application of typical rectangular nets, virtually installed to protect rock slope face, several problems have also been pointed out up to date. Rectangular draped nets are vulnerable to a sudden external shock such as rock fall, because it doesn't have any systematical buffers or shock absorbers. Furthermore, it has been widely recognized from the some cases of rock fall accident in Korea that rock fall protection nets cause wide range of failure in the rock slope faces due to insufficient pullout bearing capacity of fixing parts. Therefore, in this study, we tried to make a consideration about the problems of existing standard rock fall protection nets in Korea, and develop a new type of hexagonal net with a shock absorber based on design rock fall energy. In this paper, laboratory and full scale test procedure is described to analysis the performance of newly developed hexagonal rock fall net, and the key results are presented and discussed.

Behavior Characteristics of Helical Pile in Granite Residual Soil (풍화토 지반에 관입된 나선형 강관말뚝의 거동 특성)

  • Cho, Chunhee;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • The rotate penetration pile is a type of displacement pile: the surrounding soil is displaced when installing the pile, and the pile can exert a large bearing power and pullout force. In addition, it uses displaced soil method that does not generate slime, and its applications are increasing in foreign countries owing to the environmentally friendly characteristics such as small noise and vibration. However, mostly driven piles-which are directly driven to the ground, and bored pile- pre-fabricated piles are buried to prebored underground, are used; however, rotate penetration piles still have limited use. Most of the laboratory tests have been carried out until now to identify the support behavior after installation of piles and ground construction, the evaluating the support behavior is lacking due to the rotation intrusive process of the rotate penetration piles. Therefore, this study used indoor experiments simulating rotation intrusive process in weathered soil, to evaluate the bearing power behavior for the weathered soil, varying the diameter of the helical bearing plates, helical bearing plate spacing, number of the helical bearing plates, and helical bearing plate specifications. As the outcome of this study, the helical pile bearing power evaluation results, change in bearing power in accordance with main specifications, and review on the comparative analysis with the existing theories were provided.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.