• Title/Summary/Keyword: pull-off test

Search Result 71, Processing Time 0.026 seconds

A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator (원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구)

  • 이병일;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Mechanical Performance Evaluation in Concrete Impregnated with Silicate for TiO2 Utilization (광촉매 활용을 위한 실리케이트 기반 표면 침투제를 적용한 콘크리트의 역학적 성능 평가)

  • Kim, Hyeok-Jung;Kim, Young-Kee;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.108-114
    • /
    • 2018
  • Degradations of durability and aesthetic performance in concrete happen during service life due to surface deterioration and dirt stains. Recently, many researches have been performed on self-cleaning and surface enhancement through surface impregnant using photocatalytic reaction with VOCs(Volatile Organic Compounds) removal. This paper is for preliminary study on surface impregnation with silicate and photocatalysis - $TiO_2$. For the work, two types of silicate based impregnants(CS - Coloidal Silica and SC - Sodium Alumina Silicate) are considered. Several tests for viscosity and surface tension are performed, and pull-off test on impregnated concrete is performed. For the surface impregnated concrete, $TiO_2$ is absorbed through submerging and spraying conditions. Through compressive strength test and SEM analysis, it is evaluated that spraying $TiO_2$ on surface impregnated concrete after 30min. of drying period is very effective both for strength enhancement and surface densification.

Bond Strength of Carbon Fiber Sheet on Concrete Substrate Processed by Vacuum Assisted Resin Transfer Molding

  • Uddin, N.;Shohel, M.;Vaidya, U.K.;Serrano-Perez, J.C.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.277-299
    • /
    • 2008
  • High quality and expedient processing repair methods are necessary to enhance the service life of bridge structures. Deterioration of concrete can occur as a result of structural cracks, corrosion of reinforcement, and freeze.thaw cycles. Cost effective methods with potential for field implementation are necessary to address the issue of the vulnerability of bridge structures and how to repair them. Most infrastructure related applications of fiber-reinforced plastics (FRPs) use traditional hand lay-up technology. The hand lay-up is tedious, labor-intensive and relies upon personnel skill level. An alternative to traditional hand lay-up of FRP for infrastructure applications is Vacuum Assisted Resin Transfer Molding (VARTM). VARTM uses single sided molding technology to infuse resin over fabrics wrapping large structures, such as bridge girders and columns. There is no work currently available in understanding the interface developed, when VARTM processing is adopted to wrap fibers such as carbon and/or glass over concrete structures. This paper investigates the interface formed by carbon fiber processed on to a concrete surface using the VARTM technique. Various surface treatments, including sandblasting, were performed to study the pull-off tensile test to find a potential prepared surface. A single-lap shear test was used to study the bond strength of CFRP fabric/epoxy composite adhered to concrete. Carbon fiber wraps incorporating Sikadur HEX 103C and low viscosity epoxy resin Sikadur 300 were considered in VARTM processing of concrete specimens.

Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method (PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향)

  • Hyun Jin;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites (적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발)

  • Park, Geon-Tae;Lee, Dong-Woo;Byun, Joon-hyung;Song, Jung-il
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

Evaluation of Adhesion, Hydrophobicity and Color Gamut of Nanoparticle embedded Polyurethane Topcoat for Aircraft with 3 Different Nanoparticles (항공기용 3종류 나노입자들로 함침된 폴리우레탄 탑코트의 접착성, 소수성 및 색재현성 특성평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.16-21
    • /
    • 2021
  • In the aircraft industry, anti- and de-icing are one of very important techniques for the safety. The anti-icing technique had not been studied while de-icing technique had been not only researched enough but applied to aircraft industry. In this work, surface roughness and energies of polyurethane (PU) topcoat were controlled with 3 different nanoparticles which was coated to PU topcoat. It was evaluated via static contact angle using distilled water. The adhesion property of 3 nanoparticles was evaluated directly using adhesion pull-off test. The color gamut of nanoparticle coated PU topcoat was also evaluated with 3 different nanoparticles. It was determined using RGB color degree variation between neat PU topcoat and coated nanoparticle. Finally, the optimized nanoparticle was determined to manufacture hydrophobic surface and to maintain color of neat PU topcoat for the aircraft.

Hydrophobicity and Adhesion Evaluation of MWCNT/Teflon-polyurethane Topcoat for Aircraft with Different MWCNT Coating Times (탄소나노튜브 코팅횟수에 따른 항공기용 탄소나노튜브/테프론-폴리우레탄 탑코트의 표면소수성 및 부착력 평가)

  • Lee, Jae-Hyuk;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.80-85
    • /
    • 2022
  • This work presents an experiment study to evaluate the nanoparticle adhesion and surface hydrophobicity characteristics of Teflon-polyurethane top coat depending on the number of multi-wall carbon nanotube (MWCNT) coatings, which is a carbon-based hydrophobic particle. In order to measure the adhesion between the nanoparticles and the top coat, adhesion pull-off test was performed with different MWCNT oxidation times. Static contact angle and roughness measurements were carried out to characterize the surface hydrophobic behavior. Through the roughness evaluation, it was confirmed that the carbon nanotubes were wetted in the Teflon-polyurethane top coat, and the degree carbon nanotube wetting was confirmed through a USB-microscope. As a result, it was found that the larger the degree of wetting, the better the adhesion. From the experimental results, as the hydrophobicity of Teflon-polyurethane increased, the adhesive propertydecreased with the number of coatings. It was possible to improve the adhesive force and determine the number of coatings of carbon nanotubes with optimized hydrophobicity.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.

Material Performance Evaluation of PolyUrea for Structural Seismic Retrofitting (구조물 내진 보강용 폴리우레아의 재료 성능 평가)

  • Cho, Chul-Min;Choi, Ji-Hun;Rhee, Seung-Hoon;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.131-139
    • /
    • 2017
  • Recently, earthquakes have frequently occurred near Korean peninsula. An experimental study is needed for developing a reinforcing method for seismic strengthening to apply to RC structures. Recently, PolyUrea (PU) as structural reinforcement materials has been receiving great interest from construction industry. The reinforcing effect of PU appeared to be excellent under blast and impact as well as earthquakes. In this study, Flexible Type PolyUrea (FTPU) developed in preceding studies was modified to develop Stiff Type PolyUrea (STPU) by varying the ratio of the components of prepolymer and hardener of FTPU. The material performance evaluation has been performed through hardening time, tensile strength and percent elongation test, pull-off test, and shore hardness test. The experimental results showed that STPU has higher tensile strength and lower elongation than FTPU. Therefore, STPU coating agent can be used for semi-permanent products. By using STPU with Fiber-Reinforced Polymer (FRP) on concrete columns, confinement effect can be enhanced to maximize seismic strength and ductility.