• Title/Summary/Keyword: pseudorabies virus(PRV)

Search Result 30, Processing Time 0.027 seconds

Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus

  • Di Wang;Dongjie Chen;Shengkui Xu;Fang Wei;Hongyuan Zhao
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.54.1-54.16
    • /
    • 2024
  • Importance: As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. Objective: This study examined the function of EP0 to provide a direction for its in-depth analysis. Methods: In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. Results: This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. Conclusions and Relevance: These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.

Diagnosis and gI antibody dynamics of pseudorabies virus in an intensive pig farm in Hei Longjiang Province

  • Wang, Jintao;Han, Huansheng;Liu, Wanning;Li, Shinian;Guo, Donghua
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.23.1-23.10
    • /
    • 2021
  • Background: Pseudorabies (PR), caused by the pseudorabies virus (PRV), is an endemic disease in some regions of China. Although there are many reports on epidemiological investigations into pseudorabies, information on PRV gI antibody dynamics in one pig farm is sparse. Objectives: To diagnose PR and analyze the course of PR eradication in one pig farm. Methods: Ten brains and 1,513 serum samples from different groups of pigs in a pig farm were collected to detect PRV gE gene and PRV gI antibody presence using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: The July 2015 results indicated that almost all brain samples were PRV gE gene positive, but PRV gI antibody results in the serum samples of the same piglets were all negative. In the boar herd, from October 2015 to July 2018 three positive individuals were culled in October 2015, and the negative status of the remaining boars was maintained in the following tests. In the sow herd, the PRV gI antibody positive rate was always more than 70% from October 2015 to October 2017; however, it decreased to 27% in January 2018 but increased to 40% and 52% in April and July 2018, respectively. The PRV gI antibody positive rate in 100-day pigs markedly decreased in October 2016 and was maintained at less than 30% in the following tests. For 150-day pigs, the PRV gI antibody positive rate decreased notably to 10% in April 2017 and maintained a negative status from July 2017. The positive trend of PRV gI antibody with an increase in pig age remarkably decreased in three tests in 2018. Conclusions: The results indicate that serological testing is not sensitive in the early stage of a PRV infection and that gilt introduction is a risk factor for a PRV-negative pig farm. The data on PRV gI antibody dynamics can provide reference information for pig farms wanting to eradicate PR.

Epidemiological investigation of porcine pseudorabies virus and its coinfection rate in Shandong Province in China from 2015 to 2018

  • Ma, Zicheng;Han, Zifeng;Liu, Zhaohu;Meng, Fanliang;Wang, Hongyu;Cao, Longlong;Li, Yan;Jiao, Qiulin;Liu, Sidang;Liu, Mengda
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.36.1-36.9
    • /
    • 2020
  • Background: Pseudorabies, also known as Aujeszky's disease, is caused by the pseudorabies virus (PRV) and has been recognized as a critical disease affecting the pig industry and a wide range of animals around the world, resulting in great economic losses each year. Shandong province, one of the most vital food animal-breeding regions in China, has a very dense pig population, within which pseudorabies infections were detected in recent years. The data, however, on PRV epidemiology and coinfection rates of PRV with other major swine diseases is sparse. Objectives: This study aimed to investigate the PRV epidemiology in Shandong and analyze the current control measures. Methods: In this study, a total number of 16,457 serum samples and 1,638 tissue samples, which were collected from 362 intensive pig farms (≥ 300 sows/farm) covered all cities in Shandong, were tested by performing enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). Results: Overall, 52.7% and 91.5% of the serum samples were positive for PRV-gE and -gB, respectively, based on ELISA results. In addition, 15.7% of the tissue samples were PCR positive for PRV. The coinfection rates of PRV with porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus, and classical swine fever virus were measured; coinfection with PCV2 was 35.0%, higher than those of the other two viruses. Macroscopic and microscopic lesions were observed in various tissues during histopathological examination. Conclusions: The results demonstrate the PRV prevalence and its coinfection rates in Shandong province and indicate that pseudorabies is endemic in pig farms in this region. This study provides epidemiological data that can be useful in the prevention and control of pseudorabies in Shandong, China.

Establishment of inflammatory model induced by Pseudorabies virus infection in mice

  • Ren, Chun-Zhi;Hu, Wen-Yue;Zhang, Jin-Wu;Wei, Ying-Yi;Yu, Mei-Ling;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2021
  • Background: Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. Objectives: Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. Methods: Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. Results: At 105-106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 102 TCID50 of PRV produced a significant inflammatory mediator increase. Conclusions: An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

Somatosensory Afferent Pathway Tracing from Rat Anterior Cruciate Ligament Nerve Endings to Cerebral Cortex Using Pseudorabies Virus (쥐 전방십자인대 신경말단에서 대뇌피질까지 Pseudorabies virus(PRV)를 이용한 구심성 체성감각신경로의 추적)

  • Kim, Jin-Su;Jeong, Soon-Taek;Cho, Se-Hyun;Park, Hyung-Bin
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.4 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • Purpose: The anterior cruciate ligament(ACL) has a neuromuscular control function as evidenced by the presence within it of mechanoreceptor. Although these mechanoreceptors have been identified, the afferent somatosensory pathways from ACL to the cerebrum have yet to be demonstrated in their entirety. In order to trace these afferent pathway, we conducted a viral trans-synaptic tracing experiment using the neurotropic pseudorabies virus(PRV). Material and Methods: The PRV was injected into the ACL of rats and allowed to replicate and spread trans-synaptically for 6 to 7 days. The brain and spinal cord of each sacrificed rat was then removed and processed immunohistochemically to detect the presence of PRV. Results: PRV-immunoreactive neurons were found to be localized in several different regions from the spinal cord to the cerebrum. Four nuclei in the reticular formation of the brain stem demonstrated strong positive labeling: the mesencephalic reticular nucleus, magnocelluar reticular nucleus, paragigantocellular reticular nucleus, and gigantocellular reticular nucleus. Conclusions: This findings suggests that the nerve endings of the rat ACL project into the cerebrum and that the reticular formation may play an important role in the afferent pathway of those nerve endings.

  • PDF

Central Localization of the Neurons Projecting to the Kidney, UB23 and GB25 Using the Pseudorabies Virus (Pseudorabies virus를 이용한 신장, 신수 및 경문에서 투사되는 중추신경계내 표지영역에 관한 연구)

  • Lee, Chang-Hyun;Lee, Si-Sup;Yook, Tae-Han
    • Journal of Acupuncture Research
    • /
    • v.18 no.3
    • /
    • pp.143-153
    • /
    • 2001
  • Objective : To investigate the relation to the organs, shu points and mu points. The labeled common locations of the spinal cord and brain were observed following injection of pseudorabies virus(PRV) into the the kidney, UB23 and GB25. Methods : After survival times of 96 hours following injection of PRV, The fifteen rats were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. Results : In spinal cord, PRV labeled neurons projecting to the kidney, BL23 and GB25 were founded in cervical, thoracic, lumbar and sacral spinal segments. Dense labeled areas of cervical segments were overlap in lateral cervical n. and lamina III-V area. Thoracic segments were overlap in lateral spinal n., intermediolateral n. and lamina V-X areas. Lumbar segments were overlap in lamina I-V areas. Sacral segments were overlap in lamina IV, V and X areas. In brain, PRV labeled areas projecting to the kidney, UB23 and GB25 were overlap in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular n./rostroventrolaterai n., raphe obscurus n,, raphe pallidus n., raphe magnus n., gigantocellular reticular n., locus coeruleus, subcoeruleus n., A5 cell group and paraventricular hypothalamic n.. Conclusions : This results suggest that PRV labeled overlap areas of projecting to the kidney may be correlated to shu and mu points related to the kidney. These morphological results provide that organs-shu(transport) and mu(alarm) points interrelationship may be related to the central autonomic pathways.

  • PDF

Expression of Pseudorabies Virus Glycoproteins gB, gC and gD using Insect Expression System

  • Yun, Bit Na Rae;Gwak, Won Seok;Lee, Ji Hoon;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.118-122
    • /
    • 2017
  • Porcine pseudorabies virus (PRV) causes the Aujeszky's disease (AD) which is economically important disease in the swine industry worldwide. Killed or live vaccines have been used to control this disease, but their efficacy and side effects remain problems to be solved. To solve these problems, in this study, production of recombinant PRV glycoprotein gB, gC and gD was investigated in insect expression system. Glycoprotein gB, gC and gD are regarded as the major immunogenic antigens in PRV. Abundant production and immunogenicity of glycoprotein gB, gC and gD were confirmed by SDS-PAGE and Western blot analysis, respectively. Optimal infection dose and time were also determined for the production of each recombinant PRV glycoprotein. Confirmation of glycosylation of recombinant gB, gC and gD suggested their usefulness as antigens for the development of diagnosis kit or vaccines for Aujeszky's disease.

Cloning of Major Capsid Protein Gene of Pseudorabies Virus and Expression by Baculovirus Vector System (Pseudorabies Virus의 Major Capsid Protein 유전자의 클론닝과 Baculovirus Vector System에 의한 발현)

  • An, Dong-Jun;Jun, Moo-Hyung;Song, Jae-Young;Park, Jong-Hyeon;Hyun, Bang-Hun;Chang, Kyung-Soo;An, Soo-Hwan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.151-162
    • /
    • 1996
  • Pseudorabies is caused by Pseudorabies virus (PRV: Aujeszky's disease virus) of Herpesviridae that is characterized by 100 to 150nm in size with a linear double-stranded DNA molecule with of approximately $90{\times}10^6Da$. This disease affects most of domestic animals such as swine, cattle, dog, sheep, cat, chicken, etc. causing high mortality and economic losses. In swine, young piglets show high mortality and pregnant sows, reproductive failures. However the adult swine reveals no clinical signs in general. But they become a carrier state and play an important role for propagation of the disease. In this study, the nucleotide sequence of major casid protein gene of PRV, Yangsan strain isolated from the diseased swine in Korea was analyzed, and the recombinant MCP was produced by expression of the MCP gene in Sf-9 cell using baculovirus transfer vector system. As result, in BamHI digestion, MCP gene locus of PRV YS strain showed different from that of Indiana S strain. The patterns of enzyme mapping were also found to be unidentical each other. The sequence of the MCP gene partially analyzed showed 98.09% identity to Indiana S strain. The expression of MCP in Sf-9 cell cotransfected by pVLMCP-44 baculovirus expression vector was characterized by Southern blot hybridization, immunofluoresent and immunocytochemical tests, SDS-PAGE and Western blotting. The rMCP with M.W. 142kDa was most effectively expressed in Sf-9 cells at the 3-4th days post inoculation of the recombinant baculovirus by 2 moi.

  • PDF

Expression of Pseudorabies Virus (PRV) Glycoproteins gB, gC and gD using Bacterial Expression System

  • Yun, Bit-Na-Rae;Bae, Sung-Min;Lee, Jun-Beom;Kim, Hee-Jung;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • The Pseudorabies (PR), also called Aujeszky's disease (AD), is an infectious viral disease caused by an alpha herpes virus and has domestic and wild pigs, as well as a wide range of domestic and wild animals, as the natural host. Pseudorabies virus (PRV) virions contain several envelope glycoproteins. Among them, gB, gC and gD are regarded as the major immunogenic proteins. We expressed these glycoproteins using the bacterial expression system and analyzed recombinant proteins. Expression of glycoproteins gC and gD were observed on SDS-PAGE or Western blot analysis, but gB was not. Optimal concentration of IPTG and inducing time were determined as 1.0 mM and 4 h, respectively, for the expression of both gC and gD in E. coli. A sodium dodecyl sulfate (SDS) was the most efficient detergent in solubilizing insoluble recombinant protein.

Spaciotemporal Plasticity of Intergeniculate Leaflet Using Genetically Modified Pseudorabies Virus Recombinant (유전자 조작된 Pseudorabies Virus 변종을 이용한 무릎사이작은핵의 시.공간적 가소성)

  • Kim, Jin-Sang;Park, Eun-Se;Cheon, Song-Hee;Kim, Min-Hee;Bang, Hyun-Soo;Kwon, Young-Shil;Lee, Bong-Hee;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.411-416
    • /
    • 2006
  • This study was carried out to investigate the spaciotemporal plasticity of intergeniculate leaflet in postnatal mongolian gerbil using genetically modified pseudorabies virus recombinant, which was a kind of excellent neurotracer with the ability to transpass the neuronal synaptic cleft. In addition, we tried to evaluate the special role of intergeniculate leaflet as a signal controler of circardian rhythm by expression of various nourotransmitters in suprachiasrnatic nucleus. The PRV-BaBlu, a genetically modified strain of PRV-Bartha with lac-Z gene, was injected into vitreous body of postnatal mongolian gerbil, and immunostained. The PRV-Bablu infected the neurons in intergeniculate leaflet of postnatal mongolian gerbil, and the degree of viral infection in postnatal period of experimental animals had tendency to increase with time consuming. This results showed that the mutant PRV-Bar-tha strain with lac-Z gene, PRV-BaBlu, was a very excellent neurotracer to localize the retinogeniculate tract with infection of neurons in intergeniculate leaflet specially.