• Title/Summary/Keyword: pseudomonas

Search Result 2,952, Processing Time 0.029 seconds

Bioconversion of Pytogallo from Gallic Acid by Pseudomonas sp. KS-96 using Rotating Disc Contactor (회전원판 반응조를 이용한 Pseudomonas sp. KS-96에 의한 gallic acid로부터 Pyrogallol의 전환)

  • An, Seung-Man;Kim, Dong-Suck;Jeong, Young-Kee;Lim, Bock-Gu;Lee, Heung-Su;Ryu, Beung-Ho
    • Journal of Life Science
    • /
    • v.7 no.2
    • /
    • pp.112-118
    • /
    • 1997
  • In previous paper Pseudomonas sp. Ks-96 isolated from the bioconversion into pyrogallol from gallic acid . Continuous bioconversion of pyrogallol was carried out using rotatory disc contactor immobilized Pseudomonas sp. Ks-96 . Enzyme activity of gallate decarboxylase released from Pseudomonas sp. Ks-96 were shown at the highest activity on 24h incubation. Culture media containing gallic acid supplied on the flow rate of 20m${\ell}$/h until thickness of cells wall reached steady state. Bioconversion rate of pyrogallol from gallic acid showed at highest level ranging from 18hr to 36h according to time courses. Continuous bioconversion of pyrogallol using rotating disc contactor was about 82% and 80% between 6 and 8 days at the feeding rate of 300m${\ell}$ per hour in the medium containing 15g/${\ell}$ gallic acid.

  • PDF

Characterization of Antibiotic Resistance of Aeromonas spp. and Pseudomonas spp. Isolated from Domestic Aquatic Animals (국내 수산생물로부터 분리된 Aeromonas spp. 및 Pseudomonas spp.의 항생제 내성에 관한 특성 분석)

  • Ye Ji Kim;Lyu Jin Jun;Young Juhn Lee;Ye Jin Ko;Yeong Eun Oh;Soo Ji Wo;Myoung Sug Kim;Joon Bum Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.388-400
    • /
    • 2023
  • Aeromonas spp. and Pseudomonas spp. are opportunistic pathogens widely distributed in the aquatic environment. To test the antibiotic susceptibility, the MIC of the 18 antibiotics mainly used in aquaculture were measured. Aeromonas spp. and Pseudomonas spp. straoms had different resistance patterns against most antibiotics. The MIC of tetracycline for four Aeromonas spp. strains (10.5%) was < 0.25 ㎍/mL. However, 0.5-4 ㎍/mL tetracycline inhibited most Pseudomonas spp. strains. The tet resistance performance of 14 genes including tet(B), tet(E), and tet(M) were investigated. Investigating, the tetracycline resistance gene of 38 Aeromonas spp. strains detected tet(A) in 21 strains (55.3%). Two Pseudomonas spp. strains showed high MIC values and no inhibition zone. tet gene analysis detected tet(D) in only one strain (5%).

Isolation and Characterization of a N2O-Reducing Rhizobacterium, Pseudomonas sp. M23 from Maize Rhizosphere Soil (옥수수 근권토양으로부터 N2O 환원 근권세균 Pseudomonas sp. M23의 분리 및 특성)

  • Ji-Yoon Kim;Soo Yeon Lee;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.203-207
    • /
    • 2023
  • The N2O-reducing rhizobacterium, Pseudomonas sp. M23, was isolated from maize rhizosphere soil. The maximum N2O reduction rate of the strain M23 was 15.6 mmol·g-dry cell weight-1·h-1. Its N2O reduction activity was not inhibited by diesel contaminant, and it was enhanced by the addition of the root exudates of maize and tall fescue. The remediation efficiency of diesel-contaminated soil planted with maize or tall fescue was not inhibited by inoculating with the strain M23. Root weights in the soil inoculated with the strain M23 were greater than those in the non-inoculated soil. These results suggest that Pseudomonas sp. M23 is a promising bacterium to mitigate N2O emissions during the remediation of diesel-contaminated soil.

Effects of Inoculation with Phosphate-Solubilizing Microorganisms on Availability and Plant Uptake of Phosphorus in Red-yellow and Calcareous Soils of Korea (한국(韓國)의 적황색(赤黃色) 및 석회질토양(石灰質土壤)에서 인산(燐酸)의 유효화(有效化) 및 작물(作物)의 인산흡수(燐酸吸收)에 대한 인산염(燐酸鹽) 가용화균(可溶化菌) 접종(接種) 효과(效果))

  • Suh, Jang-Sun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • Effects of inoculation with phosphate-solubilizing microorganisms, Pseudomonas putida and Aspergillus niger, were studied in both acidic red-yellow and alkaline calcareous soils cropped with pimiento. In red-yellow soil after cultivation, the amounts of soil available phosphorus on non-fertilizer and fertilizer plots inoculated with Aspergillus niger, and on rice straw plot inoculated with Pseudomonas putida and Aspergillus niger were significantly higher than uninoculation treatments, but there were no differences in calcareous soil. With inoculation of either Pseudomonas putida or Aspergillus niger, increase in phosphorous uptake by pimiento cultivated in calcareous soil was detected on non-fertilizer, and fertilizer plots except rice straw plot. Although there were no significant differences in soil cellulase activities among treatments, the activity was the highest on rice straw plot in red-yellow soil. The phosphatase activities in red-yellow soil were increased by the inoculation with Aspergillus niger only, and the activity in calcareous soil was improved by the inoculation with either Pseudomonas putida or Aspergillus niger.

  • PDF

Evaluation of Soil Microflora in Salt Accumulated Soils of Plastic Film House (염유집적(鹽類集積) 시설재배지(施設栽培地)의 토양미생물상(土壤微生物相) 평가(評價))

  • Kwon, Jang-Sik;Suh, Jang-Sun;Weon, Hang-Yeon;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.204-210
    • /
    • 1998
  • The experiment was conducted to obtain the basic data required to characterize and improve rhizosphere environment of salt-accumulated greenhouse(SAG) soils by comparing the soil properties and the microbial flora of such soils to those of unprotected arable upland(UAU) soils. Soils were sampled from greenhouses and unprotected upland fields around the country. Microbial propulation, biomass C content and soil chemical properties were of interest. Population density of fluorescent Pseudomonas was high in UAU soils, while those of pathogenic Fusarium sp. and fluorescent Pseudomonas were low in SAG soils. With increasing soil organic matter(OM) content, the population densities of Bacillus sp., fluorescent Pseudomonas sp., Enterobacteriaceae, and microbial biomass C content increased. As soil electrical conductivity(EC) increased higher than $5.1dS\;m^{-1}$, the ratios of bacteria to fungi(B/F) and actinomycetes to fungi(A/F) and the population density of fluorescent Pseudomonas decreased remarkably. The soil pH was positively related to the population density of aerobic bacteria, while it was negatively related to that of fungi. The soil OM content was significantly correlated to the population densities of actinomycetes($r=0.226^*$). Bacillus sp.($r=0.334^{**}$), Enterobacteriaceae($r=0.276^*$), and the microbial biomass C content($R=0.439^{**}$). The population density of actinomycetes was also significantly correlated with soil exchangeable Ca($r=0.334^{**}$) and Mg($r=0.352^{**}$).

  • PDF

Effect of Exogenous Trehalose on the Solvent Tolerance of Pseudomonas sp. BCNU 106 (유기용매 내성 Pseudomonas sp. BCNU 106 균주의 외인성 트레할로스의 영향)

  • Choi, Hye Jung;Lim, Bo Ra;Ha, Sang-Chul;Kwon, Gi-Seok;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.945-950
    • /
    • 2017
  • To some extent, the growth of solvent-tolerant Pseudomonas sp. BCNU 106 is limited by toxic solvents. Therefore, various strategies to overcome this limitation need to be investigated. One such strategy is to use exogenous trehalose. The highest intracellular trehalose content of 181.88 mM was measured at 12 hr. The extracellular trehalose content decreased rapidly within 12 to 16 hr in the presence of cyclohexane. Moreover, the number of Pseudomonas sp. BCNU 106 cells grown in Luria-Bertani (LB) broth supplemented with 0.1 M trehalose in the presence of 1%(v/v) cyclohexane, hexane, propylbenzene, and m-xylene increased 89.94-, 89.72-, 91.25-, and 118.9-fold, respectively, in comparison to the control level. High survival rates of 80% and 90% were observed in the presence of cyclohexane and hexane by the addition of 0.05 M trehalose for up to 4 hr, respectively. Exogenously-added trehalose was transported into the cells, and it conferred protection against cyclohexane, hexane, propylbenzene, and m-xylene. Adding exogenous trehalose to the growth medium improved the tolerance of Pseudomonas sp. BCNU 106; thus, it is a potential biocatalyst for biotransformation and biodegradation.

Detection of Pseudomonas tolaasii Causing Brown Blotch Disease of Mushroom with Species-specific DNA Probe (종 특이 DNA probe를 이용한 버섯 세균성 갈반병 병원균(Pseudomonas tolaasii)의 검출)

  • Kwon, Soon-Wo;Go, Seung-Joo;Cheun, Meung-Sook;Kang, Hee-Wan;Oh, Se-Jong;Chang, Who-Bong;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.132-137
    • /
    • 1999
  • This study was carried out to develop the molecular marker for the detection of Pseudomonas tolaasii, a causative agent of bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). When several primers designed from repetitive sequences and pectin lyase genes of bacteria were used to produce DNA polymorphism from different Pseudomonas spp. isolated from edible mushrooms, PEU1 primer derived from pectin lyase gene produced polymorphic bands differentiating P. tolaasii strains from other Pseudomonas species. Two bands, 1.0kb and 0.4kb, found commonly in 6 isolates of P. tolaasii were cloned into pGEM-T vector which were designated as pPTOP1 and pPTOP2, respectively, to use as probe. The 0.4 kb insert of pPTOP2 hybridized to only 6 isolates of P. tolaasii, but did not to the other Pseudomonas species. As few as $1.5{\times}10^3$ colony forming unit (cfu) of P. tolaasii could be detected by dot blot hybridization with the cloned 0.4kb DNA in pPTOP2.

  • PDF

Characterization of Bacteria Isolated from Rotted Onions (Allium cepa) (양파 부패병변에서 분리한 세균의 특성)

  • Lee Chan-Jung;Lim Si-Kyu;Kim Byung-Chun;Park Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2005
  • One hundred thirty nine bacteria were isolated from rotten onions collected from main producing districts, Chang-Nyung, Eui-Ryung, and Ham-Yang in Korea. The $18\%$ (25 strains) of bacterial isolates have carboxymethylcellulase (CMCase) activity and the $53\%$ (74 strains) have polygalacturonase (PGase) activity. Thirty one among randomly selected 45 strains of PGase producing bacteria have pathogenicity to onions. The isolates were classified into Pseudomonas sp. (18 strains), Bacillus sp. (11 strains), Yers-inia sp. (7 strains), and others (9 strains) on the basis of FAMEs patterns. Eighteen strains of Pseudomonas sp. were mainly divided into three cluster in the dendrogram and only the two clusters of them showed pathogenicity to onions. CMCase and PGase activities of Pseudomonas sp. weaker than those of Bacillus sp.. However, the pathogenicity of pseudomonas sp. to soften onions was stronger than that of Bacillus sp. Inoculation of $10^{2}$ cfu of Pseudomonas sp. gives rise to softening of onions. Pseudomonas sp. was identified as Pseudomonas gladioli by biochemical and physiological characteristics. P. gladioli is the first reported bacterium as a pathogen of onion in Korea. In low temperature, P. gladioli showed better growth and higher PGase activity than those of Bacillus sp. identified as Bacillus subtilis. And pH 9.0 is optimal pH for PGase activity of B. subtilis while that of P. gladioli is pH $5.0\∼6.0$ which is the acidity of onions. Taken together, P. gladioli may be a main pathogene of onion rot during the cold storage condition.