• Title/Summary/Keyword: pseudoephedrine

Search Result 22, Processing Time 0.034 seconds

Comparative Dissolution test of Terfenadine-Pseudoephedrine HCl Double-layered and Core Tablet (Terfenadine-pseudoephedrine HCl의 이중정 및 유핵정의 비교 용출시험)

  • Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.213-217
    • /
    • 1997
  • The present sustained-release terfenadine-pseudoephedrine HCl dosage form was the core tablet composed of outer (fast-release) layer containing 60 mg of terfenadine and l0mg of pseudoephedrine HCl, and inner (sustained-release) layer containing 110 mg of pseudoephedrine HCl. The purpose of this study was to investigate the possibility of formulating the terfenadine-pseudoephedrine HCl double-layered tablet which was bioequivalent to the core tablet. Its sustained-release and fast-release layer were formulated with disintegrating agents and polymers, respectively, varying with their kinds and amounts. The comparative dissolution test of double-layered and core tablet was carried out at pH 1.2, 4.0 and 6.8, leading to select composite of double-layered tablet whose dissolution pattern was similar to that of core tablet. It was composed of fast-release layer containing 60mg of terfenadine. 10 mg of pseudoephedrine HCl, sodium bicarbonate, microcrystalline cellulose and sodium starch glycolate, and sustained-release layer containing 110 mg of pseudoephedrine HCl and ethylcellulose/hydroxypropyl methylcellulose) (110/30 mg/tablet).

  • PDF

Simultaneous Determination of (+)-Pseudoephedrine and (-)-Ephedrine in Ephedra intermedia by HPLC-UV (HPLC-UV를 이용한 중마황의 (+)-Pseudoephedrine과 (-)-Ephedrine의 동시분석법 개발)

  • Jeong, Birang;Yoon, Yoosik;Shin, Soon Shik;Kwon, Yong Soo;Yang, Heejung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.93-96
    • /
    • 2017
  • Ephedra alkaloids, (-)-ephedrine, (+)-pseudoephedrine, (-)-N-methylephedrine, (+)-N-methylpseudoephedrine, (-)-norephedrine and (+)-norpseudoephedrine, from ephedra herb are sympathomimetic agonists causing an increase of metabolism, blood pressure and perspiration. In this study, we developed the validation method of (+)-pseudoephedrine and (-)-ephedrine, two major ephedra alkaloids in Ephedra spp., by high-performance liquid chromatography-ultraviolet spectrometer (HPLC-UV). HPLC analysis was performed using a HECTOR-M C18 column operating at $35^{\circ}C$, and UV detection at 215nm. The mobile phase used a gradient flow with 25 mM SDS in water (A) and acetonitrile (B).

Simplified HPLC Method for the Determination of Pseudoephedrine Hydrochloride from Allegra D Tablet

  • Park, Moon-Hee;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.123-126
    • /
    • 2007
  • A sensitive, simple and highly selective liquid chromatography method of determination for extraction of pseudoephedrine hydrochloride from Allegra D tablet was developed. The chief benefit of the present method is the minimal sample preparation, as the procedure is only filtering through pore syringe filter. Two drugs (pseudoephedrine hydrochloride, fexofenadine) were separated on a C$_{18}$ column and analyzed by high performance liquid chromatography (HPLC). The method had a chromatographic run time of 8.0 min. 1 ml of pseudoephedrine hydrochloride solution (1 mg/ml) was filtered through 0.22 um pore syringe filter. 50 ul of filtering solution was injected to HPLC pump and we knew the retention time (1.85 min) of separating of pseudoephedrine hydrochloride using UV detector at 280 nm. We used C$_{18}$ column (4.6 mm${\times}$250 mm), mobile phase solution (<0.05 mol/L NaH$_2$PO$_4$, 2 ml/L H$_3$PO$_4$>/CH$_3$CN / sodium dodesyl sulfate = 60 ml / 40 ml / 1 g). We separated psedoephedrine hydrochloride at run time of 1.85 min from Allegra D tablet solution (1 mg/ml) filtered through 0.22 um pore syringe filter using UV detector at 280 nm. Flow rate was set at 1.0 ml/min and the column temperature was set at 40$^{\circ}C$. Psedoephedrine hydrochloride solution (1 mg/ml) separated from Allegra D tablet was filtered through 0.22 um pore syringe filter and injected 50 ul. We confirmed the peak of psedoephedrine hydrochloride at same retention time and the separating solution was freeze-dried. In conclusion, A simple isocratic reverse-phase HPLC method has been developed that provides excellent separation of pseudoephedrine from Allegra D tablet.

Determination of pseudoephodrine, dextromethorphan and their metabolites in human urine by gas chromatography - mass spectrometry (GC/MS를 이용한 소변 중 Pseudoephedrine과 Dexrormethorphan 및 대사체의 동시분석)

  • Lee, Won Woong;Ahn, Sung-Ho;Lee, Sung-Woo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.315-322
    • /
    • 2007
  • This study has been described the metabolism and excretion in a healthy male urine collected for 24 hr after oral administration of a complex (pseudoephedrine and dextromethorphan). To detect the trace amounts of parent drugs and their metabolites, acid-hydrolyzed urine was extracted and derivatized with MSTFA and MBTFA followed by gas chromatography/mass spectrometric analysis. Two parent drugs and their metabolites were tentatively identified as their derivatives based on the mass spectral interpretation and compared with previous reports. In addition, the time profile of urinary excretion rate for parent drugs and metabolites was studied. On the basis of metabolites identified and excretion rate, the metabolic pathways of both drugs are suggested.

Optimization of Extraction Conditions for Active Compounds of Herbal Medicinal Formula, DF, by Response Surface Methodology

  • Jeong, Birang;Choi, Seong Yeon;Jang, Hyeon Seok;Yoo, Guijae;Kim, Seung Hyun;Kim, Jung-Hwan;Kwon, Yong Soo;Roh, Jong Seong;Yoon, Yoosik;Shin, Soon Shik;Yang, Heejung
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • DF formula is comprised of three traditional herbs, Ephedra intermedia, Rheum palmatum and Lithospermum erythrorhizon, and locally used for treating of the metabolic diseases, such as obesity and diabetes in Korea. We tried to optimize the extraction conditions of two major components, (-)-ephedrine and (+)-pseudoephedrine, in DF formula using response surface methodology with Box-Behnken design (BBD). The experimental conditions with 70% for EtOH concentrations, 4.8 hour for extraction hours and 8.7 times for the solvent to material ratio were suggested for the optimized extraction of DF formula with the highest amounts of (-)-ephedrine and (+)-pseudoephedrine in the designed model.

Quantitative determination of pseudoephedrine in human plasma by reversed-phase liquid chromatography-electrospray ionization mass spectrometry

  • Kim, Jin-Ki;Cho, Jung-Hye;Woo, Jong-Soo;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.394.2-394.2
    • /
    • 2002
  • A sensitive and selective reversed-phase LC-ESI-MS method to quantitate pseudoephedrine in human plasma was developed and validated. Phenacetin was used as an internal standard. Samples were prepared simply by acetonitrile precipitation without an evaporation step. Chromatographic separation was achieved on a XTerra MS C18 column ($150{times}2.1$ mm I.D.. 3.5 $\mu\textrm{m}$ particles). using gradient elution with 0.5% (v/v) trifluoroacetic acid (TFA) in water and 0.5% (v/v) TFA in methanol at a flow-rate of 0.1 ml/min. (omitted)

  • PDF

A Study on the Control of Pseudoephedrine Hydrochloride Release from Hydroxypropylmethylcellulose Matrices (Hydroxypropylmethylcellulose로부터 염산슈도에페드린의 방출조절에 관한 연구)

  • Cho, Hoon;Bang, Moon-Soo;Chung, Yongseog
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-205
    • /
    • 1999
  • Hydroxypropylmethylcelluloses (HPMC) are cellulose ethers which may be used as the basis for hydrophilic matrices for controlled release oral delivery and offer the advantages of being non-toxic and relatively inexpensive. In this work, we designed new drug release system using HPMC as matrix, manufactured by direct compression technology and have investigated the effects of the controlling factors on drug release from a swellable hydrophillic delivery system. It was found that the release rate of the drug decreased with increasing the polymer molecular weight and the polymer content in tablets, and was independent of compaction pressure and pH of dissolution fluids. Especially, the ability of the anionic surfactant, sodium laurylsulfate, to retard the release of pseudoephedrine hydrochloride from HPMC was characterised. With increasing the concentration of the sodium laurylsulfate within the matrix, drug release rate decreased. It is believed that, provided the pseudoephedrine hydrochloride and the sodium laurylsulfate are oppositely charged, they will bind together in situ within the HPMC matrix, leading to reduced drug release rates.

  • PDF

Spectrophotometric Determination of Ephedrine Alkaloids by Charge-Transfer Complexation (전하이동 착물형성에 의한 Ephedrine Alkaloids의 분석화학적 연구)

  • 옥치완;백채선
    • YAKHAK HOEJI
    • /
    • v.31 no.5
    • /
    • pp.330-337
    • /
    • 1987
  • The weak UV absorbing ephedrine alkaloids such as ephedrine, pseudoephedrine, methylephedrine and norephedrine could be analyzed by charge-transfer spectrophotometric method. The results obtained are summarized as follows: (1) It was possible to determine a weak UV absorbing ephedrine alkaloids using the intense charge-transfer UV bands in chloroform. (2) This method was suitable for the spectrophotometric determination of ephedrine alkaloids in mixed pharmaceutical preparation. (3) Linear relationship was found between absorbance and concentration in the range of 1.0$\times$$10^{-5}M$~5$\times$$10^{-5}M$ of ephedrine ($\varepsilon$= 2.72$\times$$10^{4}LM^{-1}cm^{-1}$ and pseudoephedrine ($\varepsilon$=2.84$\times$$10^{4]LM^{-1}cm^{-1}$), 1.0$\times$$10^{-5}M$~5$\times$$10^{-5}$M of methylephdrine ($\varepsilon$=1.68$\times$$10^{4}LM^{-1}cm^{-1}$) and 1/3$\times$$10^{-4}M$~4/3$\times$$10^{-4}M$ of norephedrine ($\varepsilon$=0.74$\times$$10^{4}LM^{-1}cm^{-1}$. (4) CT- complex of ephedrine, pseudoephedrine and methylephedrine has absorption maxima at 293nm and norephedrine have absorption maximum at 253nm. (5) CT-complexes were formed in a 1:1 ratio between ephedrine alkaloids and iodine in chloroform. (6) By UV, IR, and $^1H$-NMR spectra, it could be inferred that CT-complexes were formed by interaction between the basic nitrogen of ephedrine alkaloids as electron (n) donor and iodine as electron ($\sigma$) acceptor.

  • PDF

Stimultaneous Determination of Ephedrine Alkaloids in Ephedra sinica and Wolbigachul-tang by High Performance Liquid Chromatography (고성능 액체 크로마토그래피를 이용한 마황 및 월비가출탕 전탕액에서 에페드린류의 동시분석)

  • Song, Miyoung;Kim, Jung-Ok;Leem, HyunHee;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.97-108
    • /
    • 2020
  • Objectives: Ephedra sinica and Wolbigachul-tang which contains Ephedra sinica are used to treat obesity in Korean medicine. The aim of this study was to analyze the quantities of ephedrine alkaloids by high-performance liquid chromatography. Methods: The analysis was performed using a YMC-Triat C18 column with operating at 25℃, and UV detection at 210 nm. The mobile phase used a gradient flow with 0.1% H3PO4 in water and acetonitrile. Specificity, linearity, precision, accuracy, limit of detection, and limit of quantification were measured for validation anaylsis. This method was applied to analyze the quantities of ephedrine alkaloids in Ephedra sinica and Wolbigachul-tang. Results: The concentration per Ephedra sinica (gram) of ephedrine and pseudoephedrine in Ephedra sinica decoction are 4.74±0.22 mg and 2.19±0.10 mg, respectively and in Wolbigachul-tang decoction are 6.39±0.34 mg and 2.97±0.21 mg, respectively. The retention time of ephedrine was 23.6 min and that of pseudoephedrine was 25.8 min, and norephedrine and methylephedrine were not detected. Conclusions: In conclusion, analyzed the concentration of ephedrine alkaloids in Ephedra sinica and Wolbigachul-tang by the developed validation method.

Discrimination of the Origin of Ephedrine and Pseudoephedrine for Pharmaceutical Powder Materials by Carbon and Nitrogen Stable Isotope Ratio Analysis ($^{13}C$$^{15}N$ 안정성 동위원소 비율 분석에 의한 원료의약품에서 에페드린 및 슈도에페드린의 기원 판별)

  • Baeck, Seung-Kyung;Jang, Moon-Hee;Makino, Yukiko;Jeong, Jin-Il;Yang, Won-Kyang;Choi, Hwa-Kyung;Chung, Hee-Sun;Pyo, Myung-Yun;Nagano, Tetsuo
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.293-297
    • /
    • 2009
  • The abuse of methamphetamine (MA) is one of the most serious drug abuses in Asia. And, the prevention of precursor production for abuse drug is one of the most effective drug control system. Isotope ratio analysis at natural abundance levels have been used to establish the environmental source or the geographic origin of various biological and nonbiological materials. Ephedrine, the precursor of MA, is produced by one of three methods; extraction from Ephedra plants, full chemical synthesis or via a semi-synthetic process involving the fermentation of sugar, followed by amination. We investigated the origin of ephedrine and pseudoephedrine based on the carbon and nitrogen values for nineteen pharmaceutical powder materials (PPMs) obtained from pharmaceutical company in Korea by stable isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). The carbon delta values for the ephedrine and pseudoephedrine were -24.21~-22.72 (mean=-23.72) $^{\cir}/_{\circ\circ}$ and -23.79~-22.71 (mean=-23.48) $^{\cir}/_{\circ\circ}$. The nitrogen delta values were 3.51~5.55 (4.43) $^{\cir}/_{\circ\circ}$ and 2.24~8.22 (5.42) $^{\cir}/_{\circ\circ}$. These results indicate that PPMs are semi-synthetic products. Therefore the origins of ephedrine(natural, semi-synthetic or synthetic) could be discriminated by using carbon and nitrogen stable isotope ratios. we are sure tat this stable isotope ratio analysis can discriminate the origins of precursors of methamphetamine.