• Title/Summary/Keyword: pseudo-static test

Search Result 64, Processing Time 0.024 seconds

타부탐색, 메모리, 싸이클 탐지를 이용한 배낭문제 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.514-517
    • /
    • 1996
  • In solving multi-level knapsack problems, conventional heuristic approaches often assume a short-sighted plan within a static decision enviornment to find a near optimal solution. These conventional approaches are inflexible, and lack the ability to adapt to different problem structures. This research approaches the problem from a totally different viewpoint, and a new method is designed and implemented. This method performs intelligent actions based on memories of historic data and learning. These actions are developed not only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal solution, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The method intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this method uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. A side effect of so-called "pseudo moves", similar to "aspirations", supports these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied for intensification. To avoid redundant moves, short-term (tabu-lists), intermediate-term (cycle detection), and long-term (recording frequency and significant solutions for diversification) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

Path Planning for the Shortest Driving Time Considering UGV Driving Characteristic and Driving Time and Its Driving Algorithm (무인 주행 차량의 주행 특성과 주행 시간을 고려한 경로 생성 및 주행 알고리즘)

  • Noh, Chi-Beom;Kim, Min-Ho;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • $A^*$ algorithm is a global path generation algorithm, and typically create a path using only the distance information. Therefore along the path, a moving vehicle is usually not be considered by driving characteristics. Deceleration at the corner is one of the driving characteristics of the vehicle. In this paper, considering this characteristic, a new evaluation function based path algorithm is proposed to decrease the number of driving path corner, in order to reduce the driving cost, such as driving time, fuel consumption and so on. Also the potential field method is applied for driving of UGV, which is robust against static and dynamic obstacle environment during following the generated path of the mobile robot under. The driving time and path following test was occurred by experiments based on a pseudo UGV, mobile robot in downscaled UGV's maximum and driving speed in corner. The experiment results were confirmed that the driving time by the proposed algorithm was decreased comparing with the results from $A^*$ algorithm.

Distributed Hybrid Simulation and Testing System using General-Purpose Finite Element Analysis Program (범용 유한요소해석 프로그램을 이용한 분산 공유 하이브리드 해석 및 실험 시스템)

  • Yun, Gun-Jin;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.59-71
    • /
    • 2008
  • In this paper, a software framework that integrates computational and experimental simulation has been developed to simulate and test a large-scale structural system under earthquake loading. The proposed software framework does not need development of the computer codes for both dynamic and static simulations. Any general-purpose software can be utilized with a main control module and interface APIs. This opens up a new opportunity to facilitate use of sophisticated finite elements into hybrid simulation regime to enhance accuracy and efficiency of simulations. The software framework described in the paper is modular and uses object oriented programming concepts. A series of illustrative examples demonstrate that the system is fully-functional and is capable of running any number of experimental and/or analytical components.

Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Strengthening performance of Reinforced Concrete Shear Columns - (Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - 철근콘크리트 전단기둥의 보강성능 평가 -)

  • Lee, Kang-Seok;Byeon, In-Hee;Son, Young-Sun;Lee, Moon-Sung;Li, Cheng-Hao;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.137-140
    • /
    • 2006
  • In this study, a seismic performance of reinforced concrete columns strengthened by a sprayed fiber reinforced polymer (SFRP) is investigated. For this purpose, six column specimens approximately scaled into 2/3, are designed and tested under a constant axial load, 10% of the nominal axial strength of column, and pseudo-static reversed cyclic lateral loading system. Four specimens are strengthened by Sprayed FRP using different combinations of short fibers (carbon or glass fiber) and resins (epoxy or vinyl esther). For comparison, the test investigated in this study also includes a specimen strengthened using carbon fiber reinforced polymer (CFRP), and also a control specimen without strengthening. The results revealed that specimens strengthened using SFRP showed a improved structure behavior, compared to control specimen, in terms of strength, ductility, lateral drift capacity, and energy-absorbtion capacity. In addition, compared to the specimen strengthened using CFRP, Sprayed FRP-strengthened specimens reasonably showed a equivalent seismic performance.

  • PDF

Cyclic Behavior of Timber Column Concealed Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.123-133
    • /
    • 2013
  • This paper presents experimental and numerical tests on a recently developed timber column concealed base joint. This joint was designed to replace the wood-wood connection found in the post-and-beam structure of Hanok, the traditional Korean timber house. The use of metallic connectors provides an increased ductility and energy dissipation for a better performance under reversed loading, especially seismic. In this study, we investigate the performance of the joint under pseudo-static reversed cyclic moment loading through the study of its ductility and energy dissipation. We first perform experimental tests. Results show that the failure occurs in the metallic connector itself because of stress concentrations, while no brittle fracture of wood occur. Subsequent numerical simulations using a refined finite element model confirm these conclusions. Then, using a practical modification of the joint configuration with limited visual impact, we improve the ductility and energy dissipation of the joint while retaining a same level of rotational strength as the originally designed configuration. We conclude that the joint has a satisfying behavior under reversed moment loading for use in earthquake resistant timber structure in low to moderate seismicity areas like Korea.

A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models (철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구)

  • Yang, Hui-Gwan;Seo, Ju-Won;Cho, Nam-So;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Analytical Model for Post Tension Flat Plate Frames (포스트 텐션 플랫 플레이트 골조의 해석모델)

  • Han, Sang-Whan;Ryu, Jong-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.23-32
    • /
    • 2007
  • This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.