• 제목/요약/키워드: pseudo seismic analysis

검색결과 123건 처리시간 0.019초

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • 제3권4호
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

변전설비 내진설계를 위한 유사공진법의 적용성 검증 (Validation of Practical Applicability of Pseudo-resonance Method for Seismic Design of Substation Equipment)

  • 조양희;조성국;박형기;권경일
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.49-57
    • /
    • 2003
  • Lately, a guideline for seismic design of electric substation facilities has been newly prepared and issued. The guideline adopts a new simplified dynamic analysis technique called "pseudo-resonance method" from the design code of Japan. The method can effectively consider resonance effect of structural system during earthquake motion. However, reliability and practical applicability of the method have not been fully guaranteed under the different seismic and engineering situations in Korea. This paper presents a validation study of the pseudo-resonance method for practical seismic analysis. For this purpose, various parametric studies have been performed using recorded earthquake motions and idealized substation equipment models. The results showed that the pseudo-resonance method can be effectively used for the practical seismic design of substation facilities in Korea.

  • PDF

단순화 해석 방법에 따른 지하공동구 지진 응답 산정 비교 (Comparison of Seismic Responses of Underground Utility Tunnels Using Simplified Analysis Methods)

  • 김대환;임영우;서현정;이혜린
    • 한국지진공학회논문집
    • /
    • 제28권4호
    • /
    • pp.205-213
    • /
    • 2024
  • In the seismic evaluation of underground utility tunnels, selecting an analytical method is critical to estimating reasonable seismic responses. In simplified pseudo-static analysis methods widely applied to typical seismic design and evaluation of underground tunnels in practice, it is essential to check whether the methods provide valid results for cut-and-cover tunnels buried in shallow to medium depth. The differences between the two simplified pseudo-static methods are discussed in this study, and the analysis results are compared to those obtained from FLAC models. In addition to the analysis methods, seismic site classification, overburden soil depth, and sectional configuration are considered variables to examine their effects on the seismic response of underground utility tunnels. Based on the analysis results, the characteristics derived from the concepts and details of each simplified model are discussed. Also, general observations are made for the application of simplified analysis methods.

Efficient seismic analysis of multi-story buildings

  • Lee, Dong Guen;Kim, Hee Cheul
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.497-511
    • /
    • 1996
  • The equivalent static force procedure and the response spectrum analysis method are widely used for seismic analyses of multi-story buildings. The equivalent static force procedure is one of the most simple but less accurate method in predicting possible seismic response of a structure. The response spectrum analysis method provides more accurate results while it takes much longer computational time. In the response spectrum method, dynamic response of a multi-story building is obtained by combining modal responses through a proper procedure such as SRSS or CQC method. Since all of the analysis results are expressed in absolute values, structural engineers have difficulties to combine them with the results obtained from the static analysis. Design automation is interrupted at this stage because of the difficulty in the decision of the most critical design load. Pseudo-dynamic analysis method proposed in this study provides more accurate seismic analysis results than those of the equivalent static force procedure since the dynamic characteristics of a structure is considered. And the proposed method has an advantage in combination of the analysis results due to gravity loads and seismic loads since the direction of the forces can be considered.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

복합댐의 등가정적해석에 의한 안정성 평가 (The Stability Evaluation for Pseudo-Static Analysis of Composite Dam)

  • 오병현;임정열;이종욱
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.205-212
    • /
    • 2002
  • It was performed that the stability evaluation using pseudo-static method and modified pseudo-static method for rockfill and rockfill-concrete section of composite dam. As a results of pseudo-static and modified pseudo-static analysis using seismic coefficient 0.154g, the maximum displacement at dam crest was occurred about 14~18cm on rockfill section and about 5~9cm on rockfill-concrete section, respectively. Also, that the factor of safety of down slope was more than 1.0~1.5. the rockfill and rockfill-concrete section of composite dam did not show any stability problems for 0.154g. Further research is still necessary in seismic safety of composite dam.

  • PDF

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

강우와 연직 지진계수의 영향도 분석을 위한 석회암지역의 무한사면 안정해석 (Infinite Slope Stability to Analyze the Effects of Rainfall and Vertical Seismic Coefficient in Limestone Area)

  • 문성우;김형신;윤현석;서용석
    • 지질공학
    • /
    • 제30권2호
    • /
    • pp.175-184
    • /
    • 2020
  • 국내에서는 비탈면을 대상으로 유사정적해석 시 수평 지진계수에 대한 적용 규정과 적용 사례들이 많이 있지만 연직 지진계수에 대한 규정이나 사례는 미비한 실정이다. 본 연구에서는 연직 지진계수의 영향도를 검토하고자 단양군 단양읍 ◯◯리를 대상으로 현장조사 및 실내시험을 수행하고, 이를 반영하여 무한사면 안정해석 기반의 유사정적 사면안정해석을 수행하였다. 분석 결과 지진규모가 5 이하인 경우에는 연직 지진계수의 영향이 거의 없는 것으로 분석되며, 지진규모가 6 이상인 경우에는 연직 지진계수가 안전율 1.1 이하의 불안정 영역을 크게 증가시키는 것으로 나타난다. 이러한 경향은 강우가 없는 조건보다 강우가 있는 조건에서 더욱 뚜렷하게 나타난다.