• Title/Summary/Keyword: pseudo order

Search Result 1,051, Processing Time 0.023 seconds

Characteristics and Parameters for Adsorption of Carbol Fuchsin Dye by Coal-based Activated Carbon: Kinetic and Thermodynamic (석탄계 활성탄에 의한 Carbol Fuchsin의 흡착 특성과 파라미터: 동력학 및 열역학)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.283-289
    • /
    • 2021
  • Adsorption characteristics of carbol fuchsin (CF) dye by coal-based activated carbon (CAC) were investigated using pH, initial concentration, temperature and contact time as adsorption variables. CF dissociates in water to have a cation, NH2+, which is bonded to the negatively charged surface of the activated carbon in the basic region by electrostatic attraction. Under the optimum condition of pH 11, 96.6% of the initial concentration was adsorbed. Isothermal adsorption behavior was analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Langmuir's equation was the best fit for the experimental results. Therefore, the adsorption mechanism was expected to be adsorbed as a monolayer on the surface of activated carbon with a uniform energy distribution. From the evaluated Langmuir's dimensionless separation coefficients (RL = 0.503~0.672), it was found that CF can be effectively treated by activated carbon. The adsorption energies determined by Temkin and Dubinin-Radushkevich models were E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. Therefore, the adsorption process was physical (E < 20 J/mol, B < 8 kJ/mol). The experimental result of adsorption kinetics fit better the pseudo second order model. In the adsorption reaction of CF dye to CAC, the negative free energy change increased as the temperature increased. It was found that the spontaneity also increased with increasing temperature. The positive enthalpy change (40.09 kJ/mol) indicated an endothermic reaction.

Characteristics and Mechanisms of Phosphate Sorption by Calcined Oyster Shell (소성 굴패각에 의한 인산염의 흡착특성 및 메커니즘)

  • Park, Jong-Hwan;Heo, Jae-Young;Lee, Su-Lim;Lee, Jae-Hoon;Hwang, Se-Wook;Cho, Hyeon-Ji;Kwon, Jin-Hyeuk;Chang, Young-Ho;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • BACKGROUND: Although the calcined oyster shell can be used as a calcium-rich adsorbent for phosphate removal, information about it is limited. The purpose of this study was to evaluate the phosphate adsorption characteristics and its mechanism using calcined oyster shells. METHODS AND RESULTS: In this study, calcined oyster shell (C-OS600) was prepared by calcining oyster shells (P-OS) at 600℃ for 20 min. Phosphate adsorption by C-OS600 was performed under various environmental conditions. Phosphate adsorption by C-OS600 occurred rapidly at the beginning of the reaction, and the time to reach equilibrium was less than 1 h. The optimal isotherm and kinetic models for predicting the adsorption of phosphate by C-OS600 were the Langmuir isotherm and pseudo-second order kinetic model, respectively, and the maximum adsorption capacity derived from the Langmuir isotherm was 68.0 mg/g. The adsorption properties of phosphate by C-OS600 were dominantly influenced by the initial pH and C-OS600 dose. In addition, SEM-EDS and FTIR analysis clearly showed a difference in C-OS600 before and after phosphate adsorption, which proved that phosphate was adsorbed on the surface of C-OS600. CONCLUSION: Overall, the calcined oyster shell can be considered as an useful and effective adsorbent to treat wastewater containing phosphate.

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

COMPARISON OF LOS DOPPLER VELOCITIES AND NON-THERMAL LINE WIDTHS IN THE OFF-LIMB SOLAR CORONA MEASURED SIMULTANEOUSLY BY COMP AND HINODE/EIS

  • Lee, Jae-Ok;Lee, Kyoung-Sun;Seough, Jungjoon;Cho, Kyung-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • Observations of line of sight (LOS) Doppler velocity and non-thermal line width in the off-limb solar corona are often used for investigating the Alfvén wave signatures in the corona. In this study, we compare LOS Doppler velocities and non-thermal line widths obtained simultaneously from two different instruments, Coronal Multichannel Polarimeter (CoMP) and Hinode/EUV Imaging Spectrometer (EIS), on various off-limb coronal regions: flaring and quiescent active regions, equatorial quiet region, and polar prominence and plume regions observed in 2012-2014. CoMP provides the polarization at the Fe xiii 10747 Å coronal forbidden lines which allows their spectral line intensity, LOS Doppler velocity, and line width to be measured with a low spectral resolution of 1.2 Å in 2-D off limb corona between 1.05 and 1.40 RSun, while Hinode/EIS gives us the EUV spectral information with a high spectral resolution (0.025 Å) in a limited field of view raster scan. In order to compare them, we make pseudo raster scan CoMP maps using information of each EIS scan slit time and position. We compare the CoMP and EIS spectroscopic maps by visual inspection, and examine their pixel to pixel correlations and percentages of pixel numbers satisfying the condition that the differences between CoMP and EIS spectroscopic quantities are within the EIS measurement accuracy: ±3 km s-1 for LOS Doppler velocity and ±9 km s-1 for non-thermal width. The main results are summarized as follows. By comparing CoMP and EIS Doppler velocity distributions, we find that they are consistent with each other overall in the active regions and equatorial quiet region (0.25 ≤ CC ≤ 0.7), while they are partially similar to each other in the overlying loops of prominences and near the bottom of the polar plume (0.02 ≤ CC ≤ 0.18). CoMP Doppler velocities are consistent with the EIS ones within the EIS measurement accuracy in most regions (≥ 87% of pixels) except for the polar region (45% of pixels). We find that CoMP and EIS non-thermal width distributions are similar overall in the active regions (0.06 ≤ CC ≤ 0.61), while they seem to be different in the others (-0.1 ≤ CC ≤ 0.00). CoMP non-thermal widths are similar to EIS ones within the EIS measurement accuracy in a quiescent active region (79% of pixels), while they do not match in the other regions (≤ 61% of pixels); the CoMP observations tend to underestimate the widths by about 20% to 40% compared to the EIS ones. Our results demonstrate that CoMP observations can provide reliable 2-D LOS Doppler velocity distributions on active regions and might provide their non-thermal width distributions.

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum yin Electrophoretic Method (전기영동법으로 알루미늄에 침적된 영가 철 나노입자에 의한 질산성 질소의 환원)

  • Ryoo, Won
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • Reductive reactivity of zero-valent iron nanoparticles was investigated for removal of nitrate-nitrogen which is considered one of the major water pollutants. To elucidate the difference in reactivity between preparation methods, iron nanoparticles were synthesized respectively from microemulsion and aqueous solution of ferric ions. Iron nanoparticles prepared from microemulsion were deposited on aluminum by electrophoretic method, and their reaction kinetics was compared to that of the same nanoparticles suspended in aqueous batch reaction. With an approximation of pseudo-first-order reaction, rate constants for suspended nanoparticles prepared from microemulsion and dilute aqueous solution were $3.49{\times}10^{-2}min^{-1}$ and $1.40{\times}10^{-2}min^{-1}$, respectively. Iron nanoparticles supported on aluminum showed ca. 30% less reaction rate in comparison with the identical nanoparticles in suspended state. However, supported nanoparticles showed the superior effectiveness in terms of nitrate-nitrogen removal per zero-valent iron input especially when excess amounts of nitrates were present. Iron nanoparticles deposited on aluminum maintained reductive reactivity for more than 3 hours, and produced nitrogen gas as a final reduction product of nitrate-nitrogen.

Prosthetic rehabilitation in a Class III malocclusion patient with increasing occlusal vertical dimension (3급 부정교합 환자의 교합수직고경 증가를 동반한 보철 수복)

  • Ha-Eun Choi;Han-Sol Song;Kyung-Ho Ko;Yoon-Hyuk Huh;Chan-Jin Park;Lee-Ra Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.3
    • /
    • pp.133-145
    • /
    • 2023
  • Class III malocclusion with mandibular protrusion can be divided into skeletal and pseudo malocclusion due to tooth displacement. For skeletal malocclusion, favorable treatment results can be obtained by establishing an appropriate vertical and horizontal intermaxillary relationship in order to secure a restoration space and obtain aesthetic and functional results. In this case, complete mouth rehabilitation was performed using an implant and a fixed prosthesis in a patient with mandibular protrusion and anterior teeth wear and reduced occlusal vertical dimension. After cast analysis and digital diagnosis, a provisional restoration with increased vertical dimension was fabricated to secure posterior support and evaluate stable centric occlusion. With the definitive prosthesis reflecting the provisional restoration, favorable function and aesthetics were obtained.

Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment (실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가)

  • Haeil Byeon;Geonhee Yeo;Anh-Hong Nguyen;Youngwoong Kim;Donggun Kim;Taehun Lee;Seolhwa Jeong;Younghoa Choi;Seungdae Oh
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • This study aimed to assess the efficacy of an adsorption process in removing organic matter and micropollutant residuals. After a full-scale water circulation system, the adsorption process was considered a post-treatment step. The system, treating anthropogenically impacted surface waters, comprises a hydro-cyclone, coagulation, flocculation, and dissolved air flotation unit. While the system generally maintained stable and satisfactory effluent quality standards over months, it did not meet the highest standard for organic matter (as determined by chemical oxygen demands). Adsorption experiments utilized two granular activated carbon types, GAC 830 and GCN 830, derived from coal and coconut-shell feedstocks, respectively. The assessment encompassed organic materials along with two notable micropollutants: acetaminophen (APAP) and acid orange 7 (AO7). Adsorption kinetics and isotherm experiments were conducted to determine adsorption rates and maximum adsorption amounts. The quantitative findings derived from pseudo-second-order kinetics and Langmuir isotherm models suggest the effectiveness of the adsorption process. The findings of this study propose the potential of employing the adsorption process as a post-treatment to enhance the treatment of contaminants that are not satisfactorily treated by conventional water circulation systems. This enhancement is crucial for ensuring the sustainability of urban water cycles.

Physical Environment Characteristics and Vegetation Structure of Natural Habitats of Pimpinella brachycarpa, Edible and Medicinal Plants (식·약용식물 참나물 자생지의 환경특성 및 식생구조)

  • Dae Hui Jeong;Yong Hwan Son;Hae Yun Kwon;Young Ki Kim
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.137-148
    • /
    • 2024
  • The purpose of this study is to investigate the weather, soil characteristics, and location environment of Pimpinella brachycarpa natural habitats in order to gather the essential information for the conservation of these habitats. P. brachycarpa are distributed throughout Korea and are mainly found to grow in shady and humid areas between 500 and 1,200 m above sea level. The average annual temperature in Mt. Duta was 13.1℃, and the average annual precipitation in Mt. Jungwon was 1,509 mm, which was higher than in other regions. The pH ranged from 4.42 to 4.97, indicating slight acidity. The total N content ranged from 0.18% to 0.68%, and the available P ranged from 13.43 to 531.56 mg/kg, demonstrating notable regional variations. The species diversity index (H') was highest at Mt. Ilwol, measuring 1.713. The evenness (J') ranged from 0.983 to 0.993, and the dominance (D') ranged from 0.007 to 0.017. The similarity index was very low, averaging 24.86%, and it was divided into communities of Wilson's elm (Ulmus davidiana var. japonica) and communities of Korean maple (Acer pseudo-siebodianum).